Suppr超能文献

基于经典德鲁德振子的含氮杂环化合物的可极化经验力场

Polarizable empirical force field for nitrogen-containing heteroaromatic compounds based on the classical Drude oscillator.

作者信息

Lopes Pedro E M, Lamoureux Guillaume, Mackerell Alexander D

机构信息

Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, USA.

出版信息

J Comput Chem. 2009 Sep;30(12):1821-38. doi: 10.1002/jcc.21183.

Abstract

The polarizable empirical CHARMM force field based on the classical Drude oscillator has been extended to the nitrogen-containing heteroaromatic compounds pyridine, pyrimidine, pyrrole, imidazole, indole, and purine. Initial parameters for the six-membered rings were based on benzene with nonbond parameter optimization focused on the nitrogen atoms and adjacent carbons and attached hydrogens. In the case of five-member rings, parameters were first developed for imidazole and transferred to pyrrole. Optimization of all parameters was performed against an extensive set of quantum mechanical and experimental data. Ab initio data were used for the determination of initial electrostatic parameters, the vibrational analysis, and in the optimization of the relative magnitudes of the Lennard-Jones (LJ) parameters, through computations of the interactions of dimers of model compounds, model compound-water interactions, and interactions of rare gases with model compounds. The absolute values of the LJ parameters were determined targeting experimental heats of vaporization, molecular volumes, heats of sublimation, crystal lattice parameters, and free energies of hydration. Final scaling of the polarizabilities from the gas-phase values by 0.85 was determined by reproduction of the dielectric constants of pyridine and pyrrole. The developed parameter set was extensively validated against additional experimental data such as diffusion constants, heat capacities, and isothermal compressibilities, including data as a function of temperature.

摘要

基于经典德鲁德振子的可极化经验式CHARMM力场已扩展至含氮杂环化合物吡啶、嘧啶、吡咯、咪唑、吲哚和嘌呤。六元环的初始参数基于苯,非键参数优化聚焦于氮原子、相邻碳原子及连接的氢原子。对于五元环,先为咪唑开发参数,再转移至吡咯。所有参数均针对大量量子力学和实验数据进行优化。从头算数据用于确定初始静电参数、振动分析以及通过计算模型化合物二聚体的相互作用、模型化合物与水的相互作用以及稀有气体与模型化合物的相互作用来优化 Lennard-Jones(LJ)参数的相对大小。LJ参数的绝对值通过针对实验汽化热、分子体积、升华热、晶格参数和水合自由能来确定。通过重现吡啶和吡咯的介电常数确定将气相极化率最终缩放0.85。所开发的参数集针对其他实验数据(如扩散常数、热容和等温压缩率,包括作为温度函数的数据)进行了广泛验证。

相似文献

2
Polarizable empirical force field for aromatic compounds based on the classical drude oscillator.
J Phys Chem B. 2007 Mar 22;111(11):2873-85. doi: 10.1021/jp0663614. Epub 2007 Feb 27.
3
Polarizable Empirical Force Field for Halogen-Containing Compounds Based on the Classical Drude Oscillator.
J Chem Theory Comput. 2018 Feb 13;14(2):1083-1098. doi: 10.1021/acs.jctc.7b01086. Epub 2018 Jan 31.
4
Development of CHARMM polarizable force field for nucleic acid bases based on the classical Drude oscillator model.
J Phys Chem B. 2011 Jan 27;115(3):580-96. doi: 10.1021/jp1092338. Epub 2010 Dec 17.
5
Polarizable Force Field for Molecular Ions Based on the Classical Drude Oscillator.
J Chem Inf Model. 2018 May 29;58(5):993-1004. doi: 10.1021/acs.jcim.8b00132. Epub 2018 Apr 17.
6
Harnessing Deep Learning for Optimization of Lennard-Jones Parameters for the Polarizable Classical Drude Oscillator Force Field.
J Chem Theory Comput. 2022 Apr 12;18(4):2388-2407. doi: 10.1021/acs.jctc.2c00115. Epub 2022 Apr 1.
8
CHARMM Drude Polarizable Force Field for Aldopentofuranoses and Methyl-aldopentofuranosides.
J Phys Chem B. 2015 Jun 25;119(25):7846-59. doi: 10.1021/acs.jpcb.5b01767. Epub 2015 Jun 9.
9
Polarizability rescaling and atom-based Thole scaling in the CHARMM Drude polarizable force field for ethers.
J Mol Model. 2010 Mar;16(3):567-76. doi: 10.1007/s00894-009-0572-4. Epub 2009 Aug 25.
10
Global Optimization of the Lennard-Jones Parameters for the Drude Polarizable Force Field.
J Chem Theory Comput. 2021 Nov 9;17(11):7085-7095. doi: 10.1021/acs.jctc.1c00664. Epub 2021 Oct 5.

引用本文的文献

1
Can We Unambiguously Define the Dipole Moment of Molecules in the Condensed Phase?
Molecules. 2025 Mar 30;30(7):1539. doi: 10.3390/molecules30071539.
2
CHARMM at 45: Enhancements in Accessibility, Functionality, and Speed.
J Phys Chem B. 2024 Oct 17;128(41):9976-10042. doi: 10.1021/acs.jpcb.4c04100. Epub 2024 Sep 20.
3
Quantifying Induced Dipole Effects in Small Molecule Permeation in a Model Phospholipid Bilayer.
J Phys Chem B. 2024 Aug 1;128(30):7385-7400. doi: 10.1021/acs.jpcb.4c01634. Epub 2024 Jul 22.
4
Harnessing Deep Learning for Optimization of Lennard-Jones Parameters for the Polarizable Classical Drude Oscillator Force Field.
J Chem Theory Comput. 2022 Apr 12;18(4):2388-2407. doi: 10.1021/acs.jctc.2c00115. Epub 2022 Apr 1.
5
Development and application of quantum mechanics/molecular mechanics methods with advanced polarizable potentials.
Wiley Interdiscip Rev Comput Mol Sci. 2021 Jul-Aug;11(4). doi: 10.1002/wcms.1515. Epub 2021 Jan 12.
6
Improved Modeling of Cation-π and Anion-Ring Interactions Using the Drude Polarizable Empirical Force Field for Proteins.
J Comput Chem. 2020 Feb 15;41(5):439-448. doi: 10.1002/jcc.26067. Epub 2019 Sep 13.
7
Drude Polarizable Force Field Parametrization of Carboxylate and -Acetyl Amine Carbohydrate Derivatives.
J Chem Theory Comput. 2019 Sep 10;15(9):4982-5000. doi: 10.1021/acs.jctc.9b00327. Epub 2019 Aug 29.
8
Force Fields for Small Molecules.
Methods Mol Biol. 2019;2022:21-54. doi: 10.1007/978-1-4939-9608-7_2.
9
Improved Modeling of Halogenated Ligand-Protein Interactions Using the Drude Polarizable and CHARMM Additive Empirical Force Fields.
J Chem Inf Model. 2019 Jan 28;59(1):215-228. doi: 10.1021/acs.jcim.8b00616. Epub 2018 Nov 27.

本文引用的文献

3
Modeling Aromatic Liquids:  Toluene, Phenol, and Pyridine.
J Chem Theory Comput. 2007 Mar;3(2):530-48. doi: 10.1021/ct600218f.
5
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
8
The polarizability of point-polarizable water models: density functional theory/molecular mechanics results.
J Phys Chem B. 2008 May 15;112(19):6233-40. doi: 10.1021/jp0757356. Epub 2008 Jan 17.
9
Predicting noncovalent interactions between aromatic biomolecules with London-dispersion-corrected DFT.
J Phys Chem B. 2007 Dec 27;111(51):14346-54. doi: 10.1021/jp0750102. Epub 2007 Dec 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验