Knabl Julia, Zeilhofer Ulrike B, Crestani Florence, Rudolph Uwe, Zeilhofer Hanns Ulrich
Institute of Pharmacology and Toxicology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland Institute of Experimental and Clinical Pharmacology and Toxicology, University of Erlangen-Nürnberg, D-91054 Erlangen, Germany Laboratory of Genetic Neuropharmacology, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, USA Institute of Pharmaceutical Sciences, ETH Zürich, CH-8057 Zürich, Switzerland.
Pain. 2009 Feb;141(3):233-238. doi: 10.1016/j.pain.2008.10.015. Epub 2008 Dec 16.
Ionotropic gamma-aminobutyric acid (GABA(A)) receptors control the relay of nociceptive signals at several levels of the neuraxis. Experiments with systemically applied benzodiazepines, which enhance the action of GABA at these receptors, have suggested both anti- and pronociceptive effects. The interpretation of such experiments has been notoriously difficult because of confounding sedation. Here, we have used genetically engineered mice, which carry specific benzodiazepine-insensitive GABA(A) receptor subunits, to test whether diazepam, a frequently used classical benzodiazepine, exerts antihyperalgesia after systemic administration in the formalin test, a model of tonic nociception. In wild-type mice, systemic diazepam (3-30 mg/kg, p.o.) dose-dependently reduced the number of formalin-induced flinches during both phases of the test by about 40-70%. This antinociception was reversed by the benzodiazepine site antagonist flumazenil (10mg/kg, i.p.), but fully retained in GABA(A) receptor alpha1 point-mutated mice, which were resistant against the sedative action of diazepam. Experiments carried out in mice with two diazepam-insensitive subunits (alpha1/alpha2, alpha1/alpha3 and alpha1/alpha5 double point-mutated mice) allowed addressing the contribution of alpha2, alpha3 and alpha5 subunits to systemic diazepam-induced antihyperalgesia in the absence of sedation. The relative contributions of these subunits were alpha2 approximately alpha3>alpha5, and thus very similar to those found for intrathecal diazepam (0.09 mg/kg). Accordingly, SL-651498 (10mg/kg, p.o.), an "anxioselective" benzodiazepine site agonist with preferential activity at alpha2/alpha3 subunits, significantly reduced formalin-induced flinching in wild-type mice. We conclude that systemic diazepam exerts a genuine antihyperalgesic effect, which depends on spinal GABA(A) receptors containing alpha2 and/or alpha3 subunits.
离子型γ-氨基丁酸(GABA(A))受体在神经轴的多个水平控制伤害性信号的传递。全身应用苯二氮䓬类药物的实验表明,这类药物可增强GABA在这些受体上的作用,既有抗伤害感受作用,也有促伤害感受作用。由于存在混杂的镇静作用,对这类实验结果的解读一直非常困难。在此,我们使用携带特定苯二氮䓬不敏感GABA(A)受体亚基的基因工程小鼠,来测试常用的经典苯二氮䓬地西泮在福尔马林试验(一种紧张性伤害感受模型)中全身给药后是否发挥抗痛觉过敏作用。在野生型小鼠中,全身给予地西泮(3 - 30毫克/千克,口服)在试验的两个阶段均剂量依赖性地将福尔马林诱导的退缩次数减少约40 - 70%。这种抗伤害感受作用可被苯二氮䓬位点拮抗剂氟马西尼(10毫克/千克,腹腔注射)逆转,但在对苯二氮䓬的镇静作用具有抗性的GABA(A)受体α1点突变小鼠中则完全保留。在具有两个对地西泮不敏感亚基的小鼠(α1/α2、α1/α3和α1/α5双点突变小鼠)中进行的实验,使得在无镇静作用的情况下能够研究α2、α3和α5亚基对全身给予地西泮诱导的抗痛觉过敏作用的贡献。这些亚基的相对贡献为α2≈α3>α5,因此与鞘内注射地西泮(0.09毫克/千克)的情况非常相似。相应地,“焦虑选择性”苯二氮䓬位点激动剂SL - 651498(10毫克/千克,口服)在α2/α3亚基上具有优先活性,可显著减少野生型小鼠中福尔马林诱导的退缩。我们得出结论,全身给予地西泮发挥真正的抗痛觉过敏作用,这取决于含有α2和/或α3亚基的脊髓GABA(A)受体。