Suppr超能文献

椎间盘细胞骨架元件组织、mRNA和蛋白质表达的区域差异。

Zonal variations in cytoskeletal element organization, mRNA and protein expression in the intervertebral disc.

作者信息

Li Siyuan, Duance Victor C, Blain Emma J

机构信息

Connective Tissue Biology Laboratories, Biomedical Sciences Building, School of Biosciences, Cardiff University, Cardiff, UK.

出版信息

J Anat. 2008 Dec;213(6):725-32. doi: 10.1111/j.1469-7580.2008.00998.x.

Abstract

The intervertebral disc is important in maintaining flexibility and dissipating loads applied to the spine. The disc comprises a heterogeneous population of cells, including those of the nucleus pulposus and annulus fibrosus, which are diverse in phenotype, partly due to the different mechanical loads they experience. Several studies have implicated the cytoskeleton in mechanotransduction, but little characterization of the three major cytoskeletal elements--actin, tubulin and vimentin--in the intervertebral disc has been undertaken. In this study we show that there are differences in both the organization and the amounts of these cytoskeletal proteins across the regions of immature bovine intervertebral disc (nucleus pulposus and outer annulus fibrosus), which differs with skeletal maturity. These differences are likely to reflect the diverse mechanical characteristics of the disc regions, and the loads that they experience, i.e. tension in the annulus fibrosus and compression in the nucleus pulposus. Alterations to the organization and amount of cytoskeletal element proteins may change the ability of the cells to respond to mechanical signals, with a loss of tissue homeostasis, suggesting that the cytoskeleton has a potential role in intervertebral disc degeneration.

摘要

椎间盘在维持脊柱灵活性和分散施加于脊柱的负荷方面起着重要作用。椎间盘由多种细胞组成,包括髓核和纤维环细胞,它们的表型各异,部分原因是它们所承受的机械负荷不同。多项研究表明细胞骨架参与了机械转导,但对椎间盘内三种主要细胞骨架成分——肌动蛋白、微管蛋白和波形蛋白——的特性研究较少。在本研究中,我们发现未成熟牛椎间盘(髓核和外周纤维环)各区域中这些细胞骨架蛋白的组织形式和含量存在差异,且这种差异随骨骼成熟度而变化。这些差异可能反映了椎间盘各区域不同的力学特性以及它们所承受的负荷,即纤维环中的张力和髓核中的压力。细胞骨架成分蛋白的组织形式和含量的改变可能会改变细胞对机械信号的反应能力,导致组织内稳态丧失,这表明细胞骨架在椎间盘退变中可能具有潜在作用。

相似文献

2
Regional variations in the cellular matrix of the annulus fibrosus of the intervertebral disc.
J Anat. 2002 Aug;201(2):159-71. doi: 10.1046/j.1469-7580.2002.00080.x.
4
The hippo pathway orchestrates cytoskeletal organisation during intervertebral disc degeneration.
Acta Histochem. 2021 Sep;123(6):151770. doi: 10.1016/j.acthis.2021.151770. Epub 2021 Aug 23.
6
The role of leptin on the organization and expression of cytoskeleton elements in nucleus pulposus cells.
J Orthop Res. 2013 Jun;31(6):847-57. doi: 10.1002/jor.22308. Epub 2013 Jan 17.
7
Quantitative proteomic analysis of normal and degenerated human intervertebral disc.
Spine J. 2016 Aug;16(8):989-1000. doi: 10.1016/j.spinee.2016.03.051. Epub 2016 Apr 25.
10
Characterisation of cytoplasm-filled processes in cells of the intervertebral disc.
J Anat. 1998 Apr;192 ( Pt 3)(Pt 3):369-78. doi: 10.1046/j.1469-7580.1998.19230369.x.

引用本文的文献

2
Exploring the Causes of Intervertebral Disc Annulus Fibrosus Impairment.
Cell Mol Bioeng. 2025 Mar 16;18(2):109-121. doi: 10.1007/s12195-025-00844-3. eCollection 2025 Apr.
3
Intervertebral Disc-on-a-Chip: A New Model for Mouse Disc Culture via Integrating Mechanical Loading and Dynamic Media Flow.
Adv Mater Technol. 2023 Nov 10;8(21). doi: 10.1002/admt.202300606. Epub 2023 Aug 27.
4
PLK1 Mitigates Intervertebral Disc Degeneration by Delaying Senescence of Nucleus Pulposus Cells.
Front Cell Dev Biol. 2022 Mar 14;10:819262. doi: 10.3389/fcell.2022.819262. eCollection 2022.
5
Development, Pathogenesis, and Regeneration of the Intervertebral Disc: Current and Future Insights Spanning Traditional to Omics Methods.
Front Cell Dev Biol. 2022 Mar 11;10:841831. doi: 10.3389/fcell.2022.841831. eCollection 2022.
6
Intervertebral Disc-on-a-Chip as Advanced Model for Mechanobiology Research and Drug Testing: A Review and Perspective.
Front Bioeng Biotechnol. 2022 Jan 28;9:826867. doi: 10.3389/fbioe.2021.826867. eCollection 2021.
8
A challenging playing field: Identifying the endogenous impediments to annulus fibrosus repair.
JOR Spine. 2021 Feb 11;4(1):e1133. doi: 10.1002/jsp2.1133. eCollection 2021 Mar.
9
Annulus fibrosus cell phenotypes in homeostasis and injury: implications for regenerative strategies.
Ann N Y Acad Sci. 2019 Apr;1442(1):61-78. doi: 10.1111/nyas.13964. Epub 2018 Sep 14.
10
Mechanotransduction and cell biomechanics of the intervertebral disc.
JOR Spine. 2018 Sep;1(3). doi: 10.1002/jsp2.1026. Epub 2018 Jul 3.

本文引用的文献

2
Gene regulation by mechanotransduction in fibroblasts.
Appl Physiol Nutr Metab. 2007 Oct;32(5):967-73. doi: 10.1139/H07-053.
3
Biologic response of the intervertebral disc to static and dynamic compression in vitro.
Spine (Phila Pa 1976). 2007 Nov 1;32(23):2521-8. doi: 10.1097/BRS.0b013e318158cb61.
4
Osteoblast-like cells and fluid flow: cytoskeleton-dependent shear sensitivity.
Biochem Biophys Res Commun. 2007 Dec 14;364(2):214-9. doi: 10.1016/j.bbrc.2007.09.109. Epub 2007 Oct 4.
5
Loading alters actin dynamics and up-regulates cofilin gene expression in chondrocytes.
Biochem Biophys Res Commun. 2007 Sep 21;361(2):329-34. doi: 10.1016/j.bbrc.2007.06.185. Epub 2007 Jul 17.
6
F-actin cytoskeletal organization in intervertebral disc health and disease.
Biochem Soc Trans. 2007 Aug;35(Pt 4):683-5. doi: 10.1042/BST0350683.
8
Disassembly of the vimentin cytoskeleton disrupts articular cartilage chondrocyte homeostasis.
Matrix Biol. 2006 Sep;25(7):398-408. doi: 10.1016/j.matbio.2006.06.002. Epub 2006 Jun 18.
9
Mechanobiology of the intervertebral disc and relevance to disc degeneration.
J Bone Joint Surg Am. 2006 Apr;88 Suppl 2:52-7. doi: 10.2106/JBJS.F.00001.
10
Exploring the mechanical behavior of single intermediate filaments.
J Mol Biol. 2005 Dec 2;354(3):569-77. doi: 10.1016/j.jmb.2005.09.092. Epub 2005 Oct 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验