Suppr超能文献

Inactivation of lacZ gene expression by UV light and bound DNA photolyase implies formation of extended complexes in the genomes of specific Escherichia coli strains.

作者信息

Li B H, Kwasniewski M, Bockrath R

机构信息

Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis 46202-5120.

出版信息

Mol Gen Genet. 1991 Aug;228(1-2):249-57. doi: 10.1007/BF00282473.

Abstract

In Escherichia coli strains WU and CS101, UV inactivation of lacZ gene expression is more effective when the cells contain amplified DNA photolyase, and flash photoreactivation (fPR) after 15 min of metabolism does not reverse inactivation by the photolyase-dimer complexes. In other strains, also studied with or without amplified DNA photolyase, there is no differential UV inactivation and fPR reverses inactivation by the complexes regardless of continued metabolism. The irreparable condition in strain WU is not due to dysfunction of photolyase: during post-UV metabolism, fPR still restores viability and dimers are removed from the region of the lac operon. When the wild-type lac promoter is replaced by the UV5 promoter, making expression insensitive to relaxed supercoiling and catabolite repression, inactivation by dimers alone becomes more resistant, i.e. requires higher fluences, but inactivation in WU and CS101 is still exceptionally sensitive to photolyase-dimer complexes. This indicates that dimers external to the wild-type lac operon may inhibit expression by altering supercoiling but that complexes must involve some other mechanism for their special effect in WU and CS101. The exceptionally efficient inactivation and irreparable condition are consistent with the idea that, in two specific laboratory strains, photolyase bound to dimers at a considerable distance from the lac operon may initiate an aggregation of DNA with other cellular molecules that extends to, and inactivates expression from, the operon.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验