Suppr超能文献

将非局部均值方法推广到超分辨率重建。

Generalizing the nonlocal-means to super-resolution reconstruction.

作者信息

Protter Matan, Elad Michael, Takeda Hiroyuki, Milanfar Peyman

机构信息

Department of Computer Science, The Technion-Israel Institute of Technology, Haifa, Israel.

出版信息

IEEE Trans Image Process. 2009 Jan;18(1):36-51. doi: 10.1109/TIP.2008.2008067.

Abstract

Super-resolution reconstruction proposes a fusion of several low-quality images into one higher quality result with better optical resolution. Classic super-resolution techniques strongly rely on the availability of accurate motion estimation for this fusion task. When the motion is estimated inaccurately, as often happens for nonglobal motion fields, annoying artifacts appear in the super-resolved outcome. Encouraged by recent developments on the video denoising problem, where state-of-the-art algorithms are formed with no explicit motion estimation, we seek a super-resolution algorithm of similar nature that will allow processing sequences with general motion patterns. In this paper, we base our solution on the Nonlocal-Means (NLM) algorithm. We show how this denoising method is generalized to become a relatively simple super-resolution algorithm with no explicit motion estimation. Results on several test movies show that the proposed method is very successful in providing super-resolution on general sequences.

摘要

超分辨率重建旨在将多幅低质量图像融合成一幅具有更高光学分辨率的高质量图像。经典的超分辨率技术在进行这种融合任务时严重依赖于精确的运动估计。当运动估计不准确时(对于非全局运动场这种情况经常发生),超分辨率结果中就会出现恼人的伪影。受视频去噪问题近期进展的鼓舞(在视频去噪中,最先进的算法无需显式的运动估计),我们寻求一种具有类似性质的超分辨率算法,以处理具有一般运动模式的序列。在本文中,我们基于非局部均值(NLM)算法来求解。我们展示了如何将这种去噪方法推广为一种无需显式运动估计的相对简单的超分辨率算法。在几部测试影片上的结果表明,所提出的方法在为一般序列提供超分辨率方面非常成功。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验