Suppr超能文献

变分贝叶斯超分辨率。

Variational bayesian super resolution.

机构信息

Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, IL 61801, USA.

出版信息

IEEE Trans Image Process. 2011 Apr;20(4):984-99. doi: 10.1109/TIP.2010.2080278. Epub 2010 Sep 27.

Abstract

In this paper, we address the super resolution (SR) problem from a set of degraded low resolution (LR) images to obtain a high resolution (HR) image. Accurate estimation of the sub-pixel motion between the LR images significantly affects the performance of the reconstructed HR image. In this paper, we propose novel super resolution methods where the HR image and the motion parameters are estimated simultaneously. Utilizing a bayesian formulation, we model the unknown HR image, the acquisition process, the motion parameters and the unknown model parameters in a stochastic sense. Employing a variational bayesian analysis, we develop two novel algorithms which jointly estimate the distributions of all unknowns. The proposed framework has the following advantages: 1) Through the incorporation of uncertainty of the estimates, the algorithms prevent the propagation of errors between the estimates of the various unknowns; 2) the algorithms are robust to errors in the estimation of the motion parameters; and 3) using a fully bayesian formulation, the developed algorithms simultaneously estimate all algorithmic parameters along with the HR image and motion parameters, and therefore they are fully-automated and do not require parameter tuning. We also show that the proposed motion estimation method is a stochastic generalization of the classical Lucas-Kanade registration algorithm. Experimental results demonstrate that the proposed approaches are very effective and compare favorably to state-of-the-art SR algorithms.

摘要

在本文中,我们从一组低分辨率(LR)退化图像解决超分辨率(SR)问题,以获得高分辨率(HR)图像。LR 图像之间亚像素运动的准确估计会显著影响重建 HR 图像的性能。在本文中,我们提出了新的超分辨率方法,其中同时估计 HR 图像和运动参数。利用贝叶斯公式,我们以随机的方式对未知的 HR 图像、采集过程、运动参数和未知的模型参数进行建模。采用变分贝叶斯分析,我们开发了两种新的算法,它们联合估计所有未知分布。所提出的框架具有以下优点:1)通过合并估计的不确定性,算法防止了各种未知量之间的估计误差的传播;2)算法对运动参数估计中的误差具有鲁棒性;3)使用完全贝叶斯公式,所开发的算法同时估计 HR 图像和运动参数以及所有算法参数,因此它们是全自动的,不需要参数调整。我们还表明,所提出的运动估计方法是经典 Lucas-Kanade 配准算法的随机推广。实验结果表明,所提出的方法非常有效,并且优于最先进的 SR 算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验