Young Alistair A, Frangi Alejandro F
Department of Anatomy with Radiology, University of Auckland, Auckland Mail Centre, Private Bag, Auckland, New Zealand.
Exp Physiol. 2009 May;94(5):578-96. doi: 10.1113/expphysiol.2008.044081. Epub 2008 Dec 19.
Integrative models of cardiac physiology are important for understanding disease and planning intervention. Multimodal cardiovascular imaging plays an important role in defining the computational domain, the boundary/initial conditions, and tissue function and properties. Computational models can then be personalized through information derived from in vivo and, when possible, non-invasive images. Efforts are now established to provide Web-accessible structural and functional atlases of the normal and pathological heart for clinical, research and educational purposes. Efficient and robust statistical representations of cardiac morphology and morphodynamics can thereby be obtained, enabling quantitative analysis of images based on such representations. Statistical models of shape and appearance can be built automatically from large populations of image datasets by minimizing manual intervention and data collection. These methods facilitate statistical analysis of regional heart shape and wall motion characteristics across population groups, via the application of parametric mathematical modelling tools. These parametric modelling tools and associated ontological schema also facilitate data fusion between different imaging protocols and modalities as well as other data sources. Statistical priors can also be used to support cardiac image analysis with applications to advanced quantification and subject-specific simulations of computational physiology.
心脏生理学的整合模型对于理解疾病和规划干预措施至关重要。多模态心血管成像在定义计算域、边界/初始条件以及组织功能和特性方面发挥着重要作用。然后,可以通过从体内获取的信息以及在可能的情况下从无创图像中获取的信息对计算模型进行个性化设置。目前正在努力提供可通过网络访问的正常和病理心脏的结构和功能图谱,用于临床、研究和教育目的。由此可以获得心脏形态和形态动力学的高效且稳健的统计表示,从而能够基于此类表示对图像进行定量分析。通过最大限度地减少人工干预和数据收集,可以从大量图像数据集中自动构建形状和外观的统计模型。这些方法通过应用参数化数学建模工具,促进了对不同人群组的区域心脏形状和壁运动特征的统计分析。这些参数化建模工具和相关的本体模式还促进了不同成像协议和模态之间以及与其他数据源之间的数据融合。统计先验也可用于支持心脏图像分析,并应用于计算生理学的高级量化和特定受试者模拟。