Scruggs Sarah B, Hinken Aaron C, Thawornkaiwong Ariyaporn, Robbins Jeffrey, Walker Lori A, de Tombe Pieter P, Geenen David L, Buttrick Peter M, Solaro R John
Department of Physiology and Biophysics and Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
J Biol Chem. 2009 Feb 20;284(8):5097-106. doi: 10.1074/jbc.M807414200. Epub 2008 Dec 23.
There is little direct evidence on the role of myosin regulatory light chain phosphorylation in ejecting hearts. In studies reported here we determined the effects of regulatory light chain (RLC) phosphorylation on in situ cardiac systolic mechanics and in vitro myofibrillar mechanics. We compared data obtained from control nontransgenic mice (NTG) with a transgenic mouse model expressing a cardiac specific nonphosphorylatable RLC (TG-RLC(P-). We also determined whether the depression in RLC phosphorylation affected phosphorylation of other sarcomeric proteins. TG-RLC(P-) demonstrated decreases in base-line load-independent measures of contractility and power and an increase in ejection duration together with a depression in phosphorylation of myosin-binding protein-C (MyBP-C) and troponin I (TnI). Although TG-RLC(P-) displayed a significantly reduced response to beta(1)-adrenergic stimulation, MyBP-C and TnI were phosphorylated to a similar level in TG-RLC(P-) and NTG, suggesting cAMP-dependent protein kinase signaling to these proteins was not disrupted. A major finding was that NTG controls were significantly phosphorylated at RLC serine 15 following beta(1)-adrenergic stimulation, a mechanism prevented in TG-RLC(P-), thus providing a biochemical difference in beta(1)-adrenergic responsiveness at the level of the sarcomere. Our measurements of Ca(2+) tension and Ca(2+)-ATPase rate relations in detergent-extracted fiber bundles from LV trabeculae demonstrated a relative decrease in maximum Ca(2+)-activated tension and tension cost in TG-RLC(P-) fibers, with no change in Ca(2+) sensitivity. Our data indicate that RLC phosphorylation is critical for normal ejection and response to beta(1)-adrenergic stimulation. Our data also indicate that the lack of RLC phosphorylation promotes compensatory changes in MyBP-C and TnI phosphorylation, which when normalized do not restore function.
关于肌球蛋白调节轻链磷酸化在射血心脏中的作用,几乎没有直接证据。在本研究报告中,我们确定了调节轻链(RLC)磷酸化对原位心脏收缩力学和体外肌原纤维力学的影响。我们将从对照非转基因小鼠(NTG)获得的数据与表达心脏特异性不可磷酸化RLC的转基因小鼠模型(TG-RLC(P-))的数据进行了比较。我们还确定了RLC磷酸化的降低是否影响其他肌节蛋白的磷酸化。TG-RLC(P-)表现出基线时与负荷无关的收缩力和功率测量值降低,射血持续时间增加,同时肌球蛋白结合蛋白-C(MyBP-C)和肌钙蛋白I(TnI)的磷酸化降低。尽管TG-RLC(P-)对β(1)-肾上腺素能刺激的反应明显降低,但MyBP-C和TnI在TG-RLC(P-)和NTG中的磷酸化水平相似,这表明向这些蛋白的cAMP依赖性蛋白激酶信号传导未被破坏。一个主要发现是,β(1)-肾上腺素能刺激后,NTG对照组的RLC丝氨酸15显著磷酸化,而TG-RLC(P-)中这一机制被阻断,从而在肌节水平上提供了β(1)-肾上腺素能反应性的生化差异。我们对左心室小梁去污剂提取的纤维束中Ca(2+)张力和Ca(2+)-ATP酶速率关系的测量表明,TG-RLC(P-)纤维中最大Ca(2+)激活张力和张力消耗相对降低,而Ca(2+)敏感性无变化。我们的数据表明,RLC磷酸化对于正常射血和对β(1)-肾上腺素能刺激的反应至关重要。我们的数据还表明,RLC磷酸化的缺乏促进了MyBP-C和TnI磷酸化的代偿性变化,这些变化在正常化后并不能恢复功能。