Suppr超能文献

无路可逃:靶向出芽过程以抑制丝状病毒复制。

No exit: targeting the budding process to inhibit filovirus replication.

作者信息

Harty Ronald N

机构信息

Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA.

出版信息

Antiviral Res. 2009 Mar;81(3):189-97. doi: 10.1016/j.antiviral.2008.12.003. Epub 2008 Dec 27.

Abstract

The filoviruses, Ebola and Marburg, cause severe hemorrhagic fever in humans and nonhuman primates, with high mortality rates. Although the filovirus replication pathway is now understood in considerable detail, no antiviral drugs have yet been developed that directly inhibit steps in the replication cycle. One potential target is the filovirus VP40 matrix protein, the key viral protein that drives the budding process, in part by mediating specific virus-host interactions to facilitate the efficient release of virions from the infected cell. This review will summarize current knowledge of key structural and functional domains of VP40 believed to be necessary for efficient budding of virions and virus-like particles. A better understanding of the structure and function of these key regions of VP40 will be crucial, as they may represent novel and rational targets for inhibitors of filovirus egress.

摘要

丝状病毒,埃博拉病毒和马尔堡病毒,可在人类和非人类灵长类动物中引发严重的出血热,死亡率很高。尽管目前已相当详细地了解了丝状病毒的复制途径,但尚未开发出直接抑制复制周期中各个步骤的抗病毒药物。一个潜在的靶点是丝状病毒VP40基质蛋白,这是驱动出芽过程的关键病毒蛋白,部分原因是它介导特定的病毒-宿主相互作用,以促进病毒粒子从受感染细胞中有效释放。本综述将总结目前已知的VP40关键结构和功能域的知识,这些结构和功能域被认为是病毒粒子和病毒样颗粒有效出芽所必需的。更好地理解VP40这些关键区域的结构和功能至关重要,因为它们可能代表丝状病毒释放抑制剂的新的合理靶点。

相似文献

1
No exit: targeting the budding process to inhibit filovirus replication.
Antiviral Res. 2009 Mar;81(3):189-97. doi: 10.1016/j.antiviral.2008.12.003. Epub 2008 Dec 27.
2
Filovirus proteins for antiviral drug discovery: Structure/function of proteins involved in assembly and budding.
Antiviral Res. 2018 Feb;150:183-192. doi: 10.1016/j.antiviral.2017.12.022. Epub 2018 Jan 2.
3
Filovirus proteins for antiviral drug discovery: Structure/function bases of the replication cycle.
Antiviral Res. 2017 May;141:48-61. doi: 10.1016/j.antiviral.2017.02.004. Epub 2017 Feb 10.
4
WWOX-Mediated Degradation of AMOTp130 Negatively Affects Egress of Filovirus VP40 Virus-Like Particles.
J Virol. 2022 Mar 23;96(6):e0202621. doi: 10.1128/jvi.02026-21. Epub 2022 Feb 2.
5
Modular mimicry and engagement of the Hippo pathway by Marburg virus VP40: Implications for filovirus biology and budding.
PLoS Pathog. 2020 Jan 6;16(1):e1008231. doi: 10.1371/journal.ppat.1008231. eCollection 2020 Jan.
6
Angiomotin Counteracts the Negative Regulatory Effect of Host WWOX on Viral PPxY-Mediated Egress.
J Virol. 2021 Mar 25;95(8). doi: 10.1128/JVI.00121-21. Epub 2021 Feb 3.
7
[Filoviruses].
Uirusu. 2012;62(2):197-208. doi: 10.2222/jsv.62.197.
8
Marburg virus exploits the Rab11-mediated endocytic pathway in viral-particle production.
Microbiol Spectr. 2024 Sep 3;12(9):e0026924. doi: 10.1128/spectrum.00269-24. Epub 2024 Jul 30.
9
Filovirus-like particles as vaccines and discovery tools.
Expert Rev Vaccines. 2005 Jun;4(3):429-40. doi: 10.1586/14760584.4.3.429.
10
Intracellular events and cell fate in filovirus infection.
Viruses. 2011 Aug;3(8):1501-31. doi: 10.3390/v3081501.

引用本文的文献

2
Research progress on the mechanism of exosome-mediated virus infection.
Front Cell Infect Microbiol. 2024 Jun 26;14:1418168. doi: 10.3389/fcimb.2024.1418168. eCollection 2024.
4
Role of phosphatidic acid lipids on plasma membrane association of the Ebola virus matrix protein VP40.
Biochim Biophys Acta Mol Cell Biol Lipids. 2024 Apr;1869(3):159464. doi: 10.1016/j.bbalip.2024.159464. Epub 2024 Feb 14.
6
Designing a novel multi‑epitope vaccine against Ebola virus using reverse vaccinology approach.
Sci Rep. 2022 May 11;12(1):7757. doi: 10.1038/s41598-022-11851-z.
7
WWOX-Mediated Degradation of AMOTp130 Negatively Affects Egress of Filovirus VP40 Virus-Like Particles.
J Virol. 2022 Mar 23;96(6):e0202621. doi: 10.1128/jvi.02026-21. Epub 2022 Feb 2.
8
The life cycle of polyploid giant cancer cells and dormancy in cancer: Opportunities for novel therapeutic interventions.
Semin Cancer Biol. 2022 Jun;81:132-144. doi: 10.1016/j.semcancer.2021.10.005. Epub 2021 Oct 17.
10
P300-mediated NEDD4 acetylation drives ebolavirus VP40 egress by enhancing NEDD4 ligase activity.
PLoS Pathog. 2021 Jun 10;17(6):e1009616. doi: 10.1371/journal.ppat.1009616. eCollection 2021 Jun.

本文引用的文献

1
A cell-based luciferase assay amenable to high-throughput screening of inhibitors of arenavirus budding.
Virology. 2008 Dec 5;382(1):107-14. doi: 10.1016/j.virol.2008.09.008. Epub 2008 Oct 16.
2
3
The HECT family of E3 ubiquitin ligases: multiple players in cancer development.
Cancer Cell. 2008 Jul 8;14(1):10-21. doi: 10.1016/j.ccr.2008.06.001.
4
Tsg101 can replace Nedd4 function in ASV Gag release but not membrane targeting.
Virology. 2008 Jul 20;377(1):30-8. doi: 10.1016/j.virol.2008.04.024.
5
Update on influenza anti-virals.
Respirology. 2008 Mar;13 Suppl 1:S19-21. doi: 10.1111/j.1440-1843.2008.01249.x.
6
Treatment of Marburg and Ebola hemorrhagic fevers: a strategy for testing new drugs and vaccines under outbreak conditions.
Antiviral Res. 2008 Apr;78(1):150-61. doi: 10.1016/j.antiviral.2008.01.152. Epub 2008 Feb 26.
7
Ebola virus matrix protein VP40 uses the COPII transport system for its intracellular transport.
Cell Host Microbe. 2008 Mar 13;3(3):168-77. doi: 10.1016/j.chom.2008.02.001.
8
9
ISG15 inhibits Ebola VP40 VLP budding in an L-domain-dependent manner by blocking Nedd4 ligase activity.
Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3974-9. doi: 10.1073/pnas.0710629105. Epub 2008 Feb 27.
10
DOVIS: an implementation for high-throughput virtual screening using AutoDock.
BMC Bioinformatics. 2008 Feb 27;9:126. doi: 10.1186/1471-2105-9-126.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验