Suppr超能文献

聚-N-乙酰葡糖胺基质多糖阻碍阳离子表面活性剂十六烷基氯化吡啶鎓通过细菌生物膜的流体对流和运输。

Poly-N-acetylglucosamine matrix polysaccharide impedes fluid convection and transport of the cationic surfactant cetylpyridinium chloride through bacterial biofilms.

作者信息

Ganeshnarayan Krishnaraj, Shah Suhagi M, Libera Matthew R, Santostefano Anthony, Kaplan Jeffrey B

机构信息

Department of Oral Biology, New Jersey Dental School, Newark, New Jersey, USA.

出版信息

Appl Environ Microbiol. 2009 Mar;75(5):1308-14. doi: 10.1128/AEM.01900-08. Epub 2008 Dec 29.

Abstract

Biofilms are composed of bacterial cells encased in a self-synthesized, extracellular polymeric matrix. Poly-beta(1,6)-N-acetyl-d-glucosamine (PNAG) is a major biofilm matrix component in phylogenetically diverse bacteria. In this study we investigated the physical and chemical properties of the PNAG matrix in biofilms produced in vitro by the gram-negative porcine respiratory pathogen Actinobacillus pleuropneumoniae and the gram-positive device-associated pathogen Staphylococcus epidermidis. The effect of PNAG on bulk fluid flow was determined by measuring the rate of fluid convection through biofilms cultured in centrifugal filter devices. The rate of fluid convection was significantly higher in biofilms cultured in the presence of the PNAG-degrading enzyme dispersin B than in biofilms cultured without the enzyme, indicating that PNAG decreases bulk fluid flow. PNAG also blocked transport of the quaternary ammonium compound cetylpyridinium chloride (CPC) through the biofilms. Binding of CPC to biofilms further impeded fluid convection and blocked transport of the azo dye Allura red. Bioactive CPC was efficiently eluted from biofilms by treatment with 1 M sodium chloride. Taken together, these findings suggest that CPC reacts directly with the PNAG matrix and alters its physical and chemical properties. Our results indicate that PNAG plays an important role in controlling the physiological state of biofilms and may contribute to additional biofilm-associated processes such as biocide resistance.

摘要

生物膜由包裹在自我合成的细胞外聚合物基质中的细菌细胞组成。聚-β(1,6)-N-乙酰-D-葡萄糖胺(PNAG)是多种系统发育细菌中主要的生物膜基质成分。在本研究中,我们调查了革兰氏阴性猪呼吸道病原体胸膜肺炎放线杆菌和革兰氏阳性器械相关病原体表皮葡萄球菌在体外产生的生物膜中PNAG基质的物理和化学性质。通过测量通过离心过滤装置培养的生物膜的流体对流速率来确定PNAG对大量流体流动的影响。在存在PNAG降解酶分散素B的情况下培养的生物膜中,流体对流速率明显高于没有该酶培养的生物膜,表明PNAG降低了大量流体流动。PNAG还阻止了季铵化合物十六烷基吡啶氯化物(CPC)通过生物膜的运输。CPC与生物膜的结合进一步阻碍了流体对流并阻止了偶氮染料诱惑红的运输。通过用1 M氯化钠处理,生物活性CPC从生物膜中被有效洗脱。综上所述,这些发现表明CPC直接与PNAG基质反应并改变其物理和化学性质。我们的结果表明,PNAG在控制生物膜的生理状态中起重要作用,并可能有助于其他与生物膜相关的过程,如抗微生物剂抗性。

相似文献

7
Characterization of the poly-β-1,6-N-acetylglucosamine polysaccharide component of Burkholderia biofilms.
Appl Environ Microbiol. 2011 Dec;77(23):8303-9. doi: 10.1128/AEM.05814-11. Epub 2011 Oct 7.
9
Poly-N-acetylglucosamine mediates biofilm formation and antibiotic resistance in Actinobacillus pleuropneumoniae.
Microb Pathog. 2007 Jul;43(1):1-9. doi: 10.1016/j.micpath.2007.02.004. Epub 2007 Mar 4.
10
An Inactive Dispersin B Probe for Monitoring PNAG Production in Biofilm Formation.
ACS Chem Biol. 2020 May 15;15(5):1204-1211. doi: 10.1021/acschembio.9b00907. Epub 2020 Jan 21.

引用本文的文献

1
Unfolding the collective functional potential of a synergistic multispecies community through genotypic and phenotypic analyses.
Biofilm. 2025 May 24;10:100290. doi: 10.1016/j.bioflm.2025.100290. eCollection 2025 Dec.
2
Synergistic activity of dispersin B and benzoyl peroxide against Cutibacterium acnes/Staphylococcus epidermidis dual-species biofilms.
PLoS One. 2025 Mar 27;20(3):e0320662. doi: 10.1371/journal.pone.0320662. eCollection 2025.
3
Dispersin B: The Quintessential Antibiofilm Enzyme.
Pathogens. 2024 Aug 7;13(8):668. doi: 10.3390/pathogens13080668.
4
Poly--(1→6)--acetyl-D-glucosamine mediates surface attachment, biofilm formation, and biocide resistance in .
Front Microbiol. 2024 May 1;15:1386017. doi: 10.3389/fmicb.2024.1386017. eCollection 2024.
5
Modification of Dispersin B with Cyclodextrin-Ciprofloxacin Derivatives for Treating Staphylococcal.
Molecules. 2023 Jul 10;28(14):5311. doi: 10.3390/molecules28145311.
6
Quaternary ammonium disinfectants and antiseptics: tolerance, resistance and potential impact on antibiotic resistance.
Antimicrob Resist Infect Control. 2023 Apr 13;12(1):32. doi: 10.1186/s13756-023-01241-z.
7
The dental plaque biofilm matrix.
Periodontol 2000. 2021 Jun;86(1):32-56. doi: 10.1111/prd.12361. Epub 2021 Mar 10.
8
Laser-induced vapor nanobubbles improve diffusion in biofilms of antimicrobial agents for wound care.
Biofilm. 2019 Jul 31;1:100004. doi: 10.1016/j.bioflm.2019.100004. eCollection 2019 Dec.

本文引用的文献

2
The hmsHFRS operon of Xenorhabdus nematophila is required for biofilm attachment to Caenorhabditis elegans.
Appl Environ Microbiol. 2008 Jul;74(14):4509-15. doi: 10.1128/AEM.00336-08. Epub 2008 May 30.
3
Poly-N-acetylglucosamine mediates biofilm formation and detergent resistance in Aggregatibacter actinomycetemcomitans.
Microb Pathog. 2008 Jan;44(1):52-60. doi: 10.1016/j.micpath.2007.08.004. Epub 2007 Aug 12.
4
Role of autolysin-mediated DNA release in biofilm formation of Staphylococcus epidermidis.
Microbiology (Reading). 2007 Jul;153(Pt 7):2083-2092. doi: 10.1099/mic.0.2007/006031-0.
5
The Bordetella Bps polysaccharide is critical for biofilm development in the mouse respiratory tract.
J Bacteriol. 2007 Nov;189(22):8270-6. doi: 10.1128/JB.00785-07. Epub 2007 Jun 22.
6
Poly-N-acetylglucosamine mediates biofilm formation and antibiotic resistance in Actinobacillus pleuropneumoniae.
Microb Pathog. 2007 Jul;43(1):1-9. doi: 10.1016/j.micpath.2007.02.004. Epub 2007 Mar 4.
7
Role of a putative polysaccharide locus in Bordetella biofilm development.
J Bacteriol. 2007 Feb;189(3):750-60. doi: 10.1128/JB.00953-06. Epub 2006 Nov 17.
10
Survival strategies of infectious biofilms.
Trends Microbiol. 2005 Jan;13(1):34-40. doi: 10.1016/j.tim.2004.11.010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验