Suppr超能文献

阴离子氨基酸支持生物膜分散糖苷酶 Dispersin B 水解聚-β-(1,6)-N-乙酰葡萄糖胺胞外多糖。

Anionic amino acids support hydrolysis of poly-β-(1,6)-N-acetylglucosamine exopolysaccharides by the biofilm dispersing glycosidase Dispersin B.

机构信息

Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA.

Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA.

出版信息

J Biol Chem. 2021 Jan-Jun;296:100203. doi: 10.1074/jbc.RA120.015524. Epub 2020 Dec 23.

Abstract

The exopolysaccharide poly-β-(1→6)-N-acetylglucosamine (PNAG) is a major structural determinant of bacterial biofilms responsible for persistent and nosocomial infections. The enzymatic dispersal of biofilms by PNAG-hydrolyzing glycosidase enzymes, such as Dispersin B (DspB), is a possible approach to treat biofilm-dependent bacterial infections. The cationic charge resulting from partial de-N-acetylation of native PNAG is critical for PNAG-dependent biofilm formation. We recently demonstrated that DspB has increased catalytic activity on de-N-acetylated PNAG oligosaccharides, but the molecular basis for this increased activity is not known. Here, we analyze the role of anionic amino acids surrounding the catalytic pocket of DspB in PNAG substrate recognition and hydrolysis using a combination of site-directed mutagenesis, activity measurements using synthetic PNAG oligosaccharide analogs, and in vitro biofilm dispersal assays. The results of these studies support a model in which bound PNAG is weakly associated with a shallow anionic groove on the DspB protein surface with recognition driven by interactions with the -1 GlcNAc residue in the catalytic pocket. An increased rate of hydrolysis for cationic PNAG was driven, in part, by interaction with D147 on the anionic surface. Moreover, we identified that a DspB mutant with improved hydrolysis of fully acetylated PNAG oligosaccharides correlates with improved in vitro dispersal of PNAG-dependent Staphylococcus epidermidis biofilms. These results provide insight into the mechanism of substrate recognition by DspB and suggest a method to improve DspB biofilm dispersal activity by mutation of the amino acids within the anionic binding surface.

摘要

聚-β-(1→6)-N-乙酰葡糖胺(PNAG)是一种主要的结构决定因素,负责持久和医院获得性感染的细菌生物膜。通过 PNAG 水解糖苷酶(如 Dispersin B [DspB])酶分散生物膜是治疗生物膜依赖性细菌感染的一种可能方法。天然 PNAG 的部分去 N-乙酰化产生的正电荷对于 PNAG 依赖性生物膜形成至关重要。我们最近证明,DspB 对去 N-乙酰化的 PNAG 寡糖具有更高的催化活性,但这种活性增加的分子基础尚不清楚。在这里,我们使用定点突变、使用合成 PNAG 寡糖类似物进行的活性测量以及体外生物膜分散测定的组合,分析 DspB 催化口袋周围的阴离子氨基酸在 PNAG 底物识别和水解中的作用。这些研究的结果支持了这样一种模型,即结合的 PNAG 与 DspB 蛋白表面上的浅阴离子槽弱结合,识别由与催化口袋中的-1 GlcNAc 残基的相互作用驱动。带正电荷的 PNAG 水解速率的增加部分是由与阴离子表面上的 D147 的相互作用驱动的。此外,我们发现具有改善的完全乙酰化 PNAG 寡糖水解活性的 DspB 突变体与 PNAG 依赖性表皮葡萄球菌生物膜的体外分散改善相关。这些结果提供了 DspB 对底物识别机制的深入了解,并提出了通过突变阴离子结合表面内的氨基酸来改善 DspB 生物膜分散活性的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验