Suppr超能文献

枯草芽孢杆菌中的酸碱应激与转录组反应

Acid and base stress and transcriptomic responses in Bacillus subtilis.

作者信息

Wilks Jessica C, Kitko Ryan D, Cleeton Sarah H, Lee Grace E, Ugwu Chinagozi S, Jones Brian D, BonDurant Sandra S, Slonczewski Joan L

机构信息

Department of Biology, Kenyon College, 202 N. College Road, Gambier, OH 43022, USA.

出版信息

Appl Environ Microbiol. 2009 Feb;75(4):981-90. doi: 10.1128/AEM.01652-08. Epub 2008 Dec 29.

Abstract

Acid and base environmental stress responses were investigated in Bacillus subtilis. B. subtilis AG174 cultures in buffered potassium-modified Luria broth were switched from pH 8.5 to pH 6.0 and recovered growth rapidly, whereas cultures switched from pH 6.0 to pH 8.5 showed a long lag time. Log-phase cultures at pH 6.0 survived 60 to 100% at pH 4.5, whereas cells grown at pH 7.0 survived <15%. Cells grown at pH 9.0 survived 40 to 100% at pH 10, whereas cells grown at pH 7.0 survived <5%. Thus, growth in a moderate acid or base induced adaptation to a more extreme acid or base, respectively. Expression indices from Affymetrix chip hybridization were obtained for 4,095 protein-encoding open reading frames of B. subtilis grown at external pH 6, pH 7, and pH 9. Growth at pH 6 upregulated acetoin production (alsDS), dehydrogenases (adhA, ald, fdhD, and gabD), and decarboxylases (psd and speA). Acid upregulated malate metabolism (maeN), metal export (czcDO and cadA), oxidative stress (catalase katA; OYE family namA), and the SigX extracytoplasmic stress regulon. Growth at pH 9 upregulated arginine catabolism (roc), which generates organic acids, glutamate synthase (gltAB), polyamine acetylation and transport (blt), the K(+)/H(+) antiporter (yhaTU), and cytochrome oxidoreductases (cyd, ctaACE, and qcrC). The SigH, SigL, and SigW regulons were upregulated at high pH. Overall, greater genetic adaptation was seen at pH 9 than at pH 6, which may explain the lag time required for growth shift to high pH. Low external pH favored dehydrogenases and decarboxylases that may consume acids and generate basic amines, whereas high external pH favored catabolism-generating acids.

摘要

对枯草芽孢杆菌的酸碱环境应激反应进行了研究。在缓冲的钾修饰的Luria肉汤中培养的枯草芽孢杆菌AG174培养物从pH 8.5转变为pH 6.0时能迅速恢复生长,而从pH 6.0转变为pH 8.5的培养物则表现出较长的延迟期。pH 6.0时的对数期培养物在pH 4.5时存活率为60%至100%,而在pH 7.0生长的细胞存活率<15%。在pH 9.0生长的细胞在pH 10时存活率为40%至100%,而在pH 7.0生长的细胞存活率<5%。因此,在适度的酸性或碱性环境中生长分别诱导了对更极端的酸性或碱性环境的适应。获得了在外部pH 6、pH 7和pH 9条件下生长的枯草芽孢杆菌4095个蛋白质编码开放阅读框的Affymetrix芯片杂交表达指数。在pH 6条件下生长上调了3 - 羟基丁酮生成(alsDS)、脱氢酶(adhA、ald、fdhD和gabD)以及脱羧酶(psd和speA)。酸性条件上调了苹果酸代谢(maeN)、金属输出(czcDO和cadA)、氧化应激(过氧化氢酶katA;OYE家族namA)以及SigX胞外应激调节子。在pH 9条件下生长上调了精氨酸分解代谢(roc),其产生有机酸、谷氨酸合酶(gltAB)、多胺乙酰化和转运(blt)、K(+)/H(+)反向转运蛋白(yhaTU)以及细胞色素氧化还原酶(cyd、ctaACE和qcrC)。SigH、SigL和SigW调节子在高pH条件下上调。总体而言,在pH 9时比在pH 6时观察到更大的遗传适应性,这可能解释了生长转变至高pH所需的延迟期。低外部pH有利于可能消耗酸并生成碱性胺的脱氢酶和脱羧酶,而高外部pH有利于生成酸的分解代谢。

相似文献

1
Acid and base stress and transcriptomic responses in Bacillus subtilis.
Appl Environ Microbiol. 2009 Feb;75(4):981-90. doi: 10.1128/AEM.01652-08. Epub 2008 Dec 29.
2
Cytoplasmic acidification and the benzoate transcriptome in Bacillus subtilis.
PLoS One. 2009 Dec 14;4(12):e8255. doi: 10.1371/journal.pone.0008255.
3
Adaptation of Bacillus subtilis to growth at low temperature: a combined transcriptomic and proteomic appraisal.
Microbiology (Reading). 2006 Mar;152(Pt 3):831-853. doi: 10.1099/mic.0.28530-0.
4
pH regulates genes for flagellar motility, catabolism, and oxidative stress in Escherichia coli K-12.
J Bacteriol. 2005 Jan;187(1):304-19. doi: 10.1128/JB.187.1.304-319.2005.
6
Adaptation of to Life at Extreme Potassium Limitation.
mBio. 2017 Jul 5;8(4):e00861-17. doi: 10.1128/mBio.00861-17.
7
Alkaline shock induces the Bacillus subtilis sigma(W) regulon.
Mol Microbiol. 2001 Jul;41(1):59-71. doi: 10.1046/j.1365-2958.2001.02489.x.
8
Comparative physiological and transcriptional analysis of weak organic acid stress in Bacillus subtilis.
Food Microbiol. 2015 Feb;45(Pt A):71-82. doi: 10.1016/j.fm.2014.02.013. Epub 2014 Feb 26.
9
Mechanisms of killing spores of Bacillus subtilis by acid, alkali and ethanol.
J Appl Microbiol. 2002;92(2):362-75. doi: 10.1046/j.1365-2672.2002.01540.x.
10
Regulatory overlap and functional redundancy among Bacillus subtilis extracytoplasmic function sigma factors.
J Bacteriol. 2007 Oct;189(19):6919-27. doi: 10.1128/JB.00904-07. Epub 2007 Aug 3.

引用本文的文献

1
Sugar-induced modulation of biogenic amines formation and metabolic profiles during fermentation.
Food Chem X. 2025 Jul 16;29:102793. doi: 10.1016/j.fochx.2025.102793. eCollection 2025 Jul.
2
Iron-dependent mechanisms in : pathogenicity and resistance.
JAC Antimicrob Resist. 2025 Mar 19;7(2):dlaf039. doi: 10.1093/jacamr/dlaf039. eCollection 2025 Apr.
3
Four Decades of Biofertilizers: Advances and Future Prospects in Agriculture.
Microorganisms. 2025 Jan 17;13(1):187. doi: 10.3390/microorganisms13010187.
5
Methods for studying microbial acid stress responses: from molecules to populations.
FEMS Microbiol Rev. 2024 Sep 18;48(5). doi: 10.1093/femsre/fuae015.
6
Active pH regulation facilitates biofilm development in a minimally buffered environment.
mBio. 2024 Mar 13;15(3):e0338723. doi: 10.1128/mbio.03387-23. Epub 2024 Feb 13.
7
Disparate Effects of Two Clerodane Diterpenes of Giant Goldenrod ( Ait.) on .
Int J Mol Sci. 2024 Jan 26;25(3):1531. doi: 10.3390/ijms25031531.
8
Penicillin-binding protein redundancy in enables growth during alkaline shock.
Appl Environ Microbiol. 2024 Jan 24;90(1):e0054823. doi: 10.1128/aem.00548-23. Epub 2023 Dec 21.
9
Integrative Multiomics Analysis of the Heat Stress Response of .
Biomolecules. 2023 Feb 25;13(3):437. doi: 10.3390/biom13030437.

本文引用的文献

1
A previously unidentified sigma factor and two accessory proteins regulate oxalate decarboxylase expression in Bacillus subtilis.
Mol Microbiol. 2008 Aug;69(4):954-67. doi: 10.1111/j.1365-2958.2008.06331.x. Epub 2008 Jun 28.
2
Environmental and growth phase regulation of the Streptococcus gordonii arginine deiminase genes.
Appl Environ Microbiol. 2008 Aug;74(16):5023-30. doi: 10.1128/AEM.00556-08. Epub 2008 Jun 13.
3
Rapid acid treatment of Escherichia coli: transcriptomic response and recovery.
BMC Microbiol. 2008 Feb 26;8:37. doi: 10.1186/1471-2180-8-37.
5
Response of Desulfovibrio vulgaris to alkaline stress.
J Bacteriol. 2007 Dec;189(24):8944-52. doi: 10.1128/JB.00284-07. Epub 2007 Oct 5.
7
Three two-component transporters with channel-like properties have monovalent cation/proton antiport activity.
Proc Natl Acad Sci U S A. 2007 Aug 14;104(33):13289-94. doi: 10.1073/pnas.0703709104. Epub 2007 Aug 6.
8
Acid-shock responses in Staphylococcus aureus investigated by global gene expression analysis.
Microbiology (Reading). 2007 Jul;153(Pt 7):2289-2303. doi: 10.1099/mic.0.2007/005942-0.
9
pH of the cytoplasm and periplasm of Escherichia coli: rapid measurement by green fluorescent protein fluorimetry.
J Bacteriol. 2007 Aug;189(15):5601-7. doi: 10.1128/JB.00615-07. Epub 2007 Jun 1.
10
Life in acid: pH homeostasis in acidophiles.
Trends Microbiol. 2007 Apr;15(4):165-71. doi: 10.1016/j.tim.2007.02.005. Epub 2007 Feb 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验