Suppr超能文献

实施创新的知情同意书:PREDICT 经验。

Implementing an innovative consent form: the PREDICT experience.

机构信息

Saint Luke's Mid America Heart Institute, 4401 Wornall Rd, Kansas City, MO 64111, USA.

出版信息

Implement Sci. 2008 Dec 31;3:58. doi: 10.1186/1748-5908-3-58.

Abstract

BACKGROUND

In the setting of coronary angiography, generic consent forms permit highly variable communication between patients and physicians. Even with the existence of multiple risk models, clinicians have been unable to readily access them and thus provide patients with vague estimations regarding risks of the procedure.

METHODS

We created a web-based vehicle, PREDICT, for embedding patient-specific estimates of risk from validated multivariable models into individualized consent documents at the point-of-care. Beginning August 2006, outpatients undergoing coronary angiography at the Mid America Heart Institute received individualized consent documents generated by PREDICT. In February 2007 this approach was expanded to all patients undergoing coronary angiography within the four Kansas City hospitals of the Saint Luke's Health System. Qualitative research methods were used to identify the implementation challenges and successes with incorporating PREDICT-enhanced consent documents into routine clinical care from multiple perspectives: administration, information systems, nurses, physicians, and patients.

RESULTS

Most clinicians found usefulness in the tool (providing clarity and educational value for patients) and satisfaction with the altered processes of care, although a few cardiologists cited delayed patient flow and excessive patient questions. The responses from administration and patients were uniformly positive. The key barrier was related to informatics.

CONCLUSION

This preliminary experience suggests that successful change in clinical processes and organizational culture can be accomplished through multidisciplinary collaboration. A randomized trial of PREDICT consent, leveraging the accumulated knowledge from this first experience, is needed to further evaluate its impact on medical decision-making, patient compliance, and clinical outcomes.

摘要

背景

在冠状动脉造影检查中,通用的同意书允许患者和医生之间进行高度可变的沟通。即使存在多种风险模型,临床医生也无法轻易获得这些模型,因此无法向患者提供关于手术风险的模糊估计。

方法

我们创建了一个名为 PREDICT 的网络工具,用于在患者接受护理点的个性化同意书时将经过验证的多变量模型中患者特定的风险估计值嵌入其中。从 2006 年 8 月开始,在密苏里州心脏研究所接受冠状动脉造影检查的门诊患者会收到由 PREDICT 生成的个性化同意书。2007 年 2 月,这种方法扩展到圣卢克卫生系统在堪萨斯城的四家医院中接受冠状动脉造影检查的所有患者。采用定性研究方法从多个角度(行政、信息系统、护士、医生和患者)识别将 PREDICT 增强型同意书纳入常规临床护理的实施挑战和成功经验。

结果

大多数临床医生发现该工具(为患者提供清晰度和教育价值)有用,并对护理流程的改变感到满意,尽管少数心脏病专家提到了患者流程的延迟和过多的患者问题。行政部门和患者的反应都是一致的。关键障碍与信息学有关。

结论

初步经验表明,通过多学科合作,可以成功改变临床流程和组织文化。需要对 PREDICT 同意书进行随机试验,利用从这第一阶段获得的经验,进一步评估其对医疗决策、患者依从性和临床结果的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3318/2621244/687c32aad54f/1748-5908-3-58-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验