Suppr超能文献

生物神经网络中连通性的最小均方误差估计

Minimum mean square error estimation of connectivity in biological neural networks.

作者信息

Yang X, Shamma S A

机构信息

Systems Research Center, University of Maryland, College Park.

出版信息

Biol Cybern. 1991;65(3):171-9. doi: 10.1007/BF00198088.

Abstract

A minimum mean square error (MMSE) estimation scheme is employed to identify the synaptic connectivity in neural networks. This new approach can substantially reduce the amount of data and the computational cost involved in the conventional correlation methods, and is suitable for both nonstationary and stationary neuronal firings. Two algorithms are proposed to estimate the synaptic connectivities recursively, one for nonlinear filtering, the other for linear filtering. In addition, the lower and upper bounds for the MMSE estimator are determined. It is shown that the estimators are consistent in quadratic mean. We also demonstrate that the conventional cross-interval histogram is an asymptotic linear MMSE estimator with an inappropriate initial value. Finally, simulations of both nonlinear and linear (Kalman filter) estimate demonstrate that the true connectivity values are approached asymptotically.

摘要

采用最小均方误差(MMSE)估计方案来识别神经网络中的突触连接性。这种新方法可以大幅减少传统相关方法中涉及的数据量和计算成本,并且适用于非平稳和平稳的神经元放电。提出了两种算法来递归估计突触连接性,一种用于非线性滤波,另一种用于线性滤波。此外,还确定了MMSE估计器的上下界。结果表明,这些估计器在二次均值上是一致的。我们还证明了传统的交叉间隔直方图是一个初始值不合适的渐近线性MMSE估计器。最后,非线性和线性(卡尔曼滤波器)估计的仿真都表明真实连接性值会渐近逼近。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验