Jacobs Pieter P, Geysens Steven, Vervecken Wouter, Contreras Roland, Callewaert Nico
Unit for Molecular Glycobiology, Department for Molecular Biomedical Research, VIB, Technologiepark 927, B-9052 Ghent (Zwijnaarde), Belgium.
Nat Protoc. 2009;4(1):58-70. doi: 10.1038/nprot.2008.213.
Here we provide a protocol for engineering the N-glycosylation pathway of the yeast Pichia pastoris. The general strategy consists of the disruption of an endogenous glycosyltransferase gene (OCH1) and the stepwise introduction of heterologous glycosylation enzymes. Each engineering step results in the introduction of one glycosidase or glycosyltransferase activity into the Pichia endoplasmic reticulum or Golgi complex and consists of a number of stages: transformation with the appropriate GlycoSwitch vector, small-scale cultivation of a number of transformants, sugar analysis and heterologous protein expression analysis. If desired, the resulting clone can be further engineered by repeating the procedure with the next GlycoSwitch vector. Each engineering step takes approximately 3 weeks. The conversion of any wild-type Pichia strain into a strain that modifies its glycoproteins with Gal(2)GlcNAc(2)Man(3)GlcNAc(2)N-glycans requires the introduction of five GlycoSwitch vectors. Three examples of the full engineering procedure are provided to illustrate the results that can be expected.
在这里,我们提供了一种对巴斯德毕赤酵母的N-糖基化途径进行工程改造的方案。总体策略包括破坏一个内源性糖基转移酶基因(OCH1)以及逐步引入异源糖基化酶。每一步工程改造都会将一种糖苷酶或糖基转移酶活性引入毕赤酵母的内质网或高尔基体复合体,并且包含多个阶段:用合适的GlycoSwitch载体进行转化、对多个转化子进行小规模培养、糖分析以及异源蛋白表达分析。如果需要,可以通过用下一个GlycoSwitch载体重复该过程,对所得克隆进行进一步改造。每一步工程改造大约需要3周时间。将任何野生型毕赤酵母菌株转化为用Gal(2)GlcNAc(2)Man(3)GlcNAc(2) N-聚糖修饰其糖蛋白的菌株,需要引入五个GlycoSwitch载体。提供了三个完整工程改造程序的示例,以说明可能预期的结果。