Phares Noelle, White Ryan J, Plaxco Kevin W
Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA.
Anal Chem. 2009 Feb 1;81(3):1095-100. doi: 10.1021/ac8021983.
Alkane thiol self-assembled monolayers (SAMs) have seen widespread utility in the fabrication of electrochemical biosensors. Their utility, however, reflects a potentially significant compromise. While shorter SAMs support efficient electron transfer, they pack poorly and are thus relatively unstable. Longer SAMs are more stable but suffer from less efficient electron transfer, thus degrading sensor performance. Here we use the electrochemical DNA (E-DNA) sensor platform to compare the signaling and stability of biosensors fabricated using a short, six-carbon monothiol with those employing either of two commercially available trihexylthiol anchors (a flexible Letsinger type and a rigid adamantane type). We find that all three anchors support efficient electron transfer and E-DNA signaling, with the gain, specificity, and selectivity of all three being effectively indistinguishable. The stabilities of the three anchors, however, vary significantly. Sensors anchored with the flexible trithiol exhibit enhanced stability, retaining 75% of their original signal and maintaining excellent signaling properties after 50 days storage in buffer. Likewise these sensors exhibit excellent temperature stability and robustness to electrochemical interrogation. The stability of sensors fabricated using the rigid trithiol anchor, by comparison, are similar to those of the monothiol, with both exhibiting significant (>60%) loss of signal upon wet storage or thermocycling. Employing a flexible trithiol anchor in the fabrication of SAM-based electrochemical biosensors may provide a means of improving sensor robustness without sacrificing electron transfer efficiency or otherwise impeding sensor performance.
烷硫醇自组装单分子层(SAMs)在电化学生物传感器的制造中有着广泛的应用。然而,它们的应用反映了一个潜在的重大权衡。较短的SAMs支持高效的电子转移,但它们的堆积性较差,因此相对不稳定。较长的SAMs更稳定,但电子转移效率较低,从而降低了传感器性能。在这里,我们使用电化学DNA(E-DNA)传感器平台,比较使用短链六碳单硫醇制造的生物传感器与使用两种市售三己硫醇锚定剂(一种柔性的莱辛格型和一种刚性的金刚烷型)制造的生物传感器的信号传导和稳定性。我们发现,所有三种锚定剂都支持高效的电子转移和E-DNA信号传导,三者的增益、特异性和选择性实际上难以区分。然而,这三种锚定剂的稳定性差异很大。用柔性三硫醇锚定的传感器表现出增强的稳定性,在缓冲液中储存50天后保留了其原始信号的75%,并保持了优异的信号传导性能。同样,这些传感器表现出优异的温度稳定性和对电化学检测的稳健性。相比之下,使用刚性三硫醇锚定剂制造的传感器的稳定性与单硫醇的相似,在湿储存或热循环后两者都表现出显著(>60%)的信号损失。在基于SAM的电化学生物传感器的制造中使用柔性三硫醇锚定剂可能提供一种在不牺牲电子转移效率或以其他方式阻碍传感器性能的情况下提高传感器稳健性的方法。