Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21202, United States.
Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.
ACS Appl Mater Interfaces. 2020 Mar 4;12(9):11214-11223. doi: 10.1021/acsami.9b22385. Epub 2020 Feb 20.
Electrochemical aptamer-based (E-AB) sensors achieve highly precise measurements of specific molecular targets in untreated biological fluids. This unique ability, together with their measurement frequency of seconds or faster, has enabled the real-time monitoring of drug pharmacokinetics in live animals with unprecedented temporal resolution. However, one important weakness of E-AB sensors is that their bioelectronic interface degrades upon continuous electrochemical interrogation-a process typically seen as a drop in faradaic and an increase in charging currents over time. This progressive degradation limits their in vivo operational life to 12 h at best, a period that is much shorter than the elimination half-life of the vast majority of drugs in humans. Thus, there is a critical need to develop novel E-AB interfaces that resist continuous electrochemical interrogation in biological fluids for prolonged periods. In response, our group is pursuing the development of better packed, more stable self-assembled monolayers (SAMs) to improve the signaling and extend the operational life of in vivo E-AB sensors from hours to days. By invoking hydrophobicity arguments, we have created SAMs that do not desorb from the electrode surface in aqueous physiological solutions and biological fluids. These SAMs, formed from 1-hexanethiol solutions, decrease the voltammetric charging currents of E-AB sensors by 3-fold relative to standard monolayers of 6-mercapto-1-hexanol, increase the total faradaic current, and alter the electron transfer kinetics of the platform. Moreover, the stability of our new SAMs enables uninterrupted, continuous E-AB interrogation for several days in biological fluids, like undiluted serum, at a physiological temperature of 37 °C.
基于电化学适体的 (E-AB) 传感器能够实现对未经处理的生物流体中特定分子靶标的高度精确测量。这种独特的能力,加上它们的测量频率为秒或更快,使得能够以前所未有的时间分辨率实时监测活体动物中的药物药代动力学。然而,E-AB 传感器的一个重要弱点是,它们的生物电子界面在连续电化学询问过程中会降解——这一过程通常表现为随着时间的推移,法拉第电流和充电电流下降。这种渐进的降解将其在体内的工作寿命限制在最佳情况下最多 12 小时,这一时间远短于人类绝大多数药物的消除半衰期。因此,迫切需要开发新型的 E-AB 界面,以在生物流体中抵抗连续的电化学询问,从而延长其在体内的工作寿命。有鉴于此,我们小组正在努力开发更好的封装、更稳定的自组装单层 (SAM),以改善信号并将体内 E-AB 传感器的工作寿命从数小时延长到数天。通过调用疏水性论点,我们创造了在水性生理溶液和生物流体中不会从电极表面解吸的 SAM。这些 SAM 由 1-己硫醇溶液形成,与标准的 6-巯基-1-己醇单层相比,将 E-AB 传感器的伏安充电电流降低了 3 倍,增加了总的法拉第电流,并改变了平台的电子转移动力学。此外,我们新的 SAM 的稳定性使得能够在生理温度 37°C 的生物流体中,如未稀释的血清中,连续、不间断地进行 E-AB 询问数天。