Suppr超能文献

胆碱氧化酶中黄素C4a-氧加合物的晶体学、光谱学及计算分析

Crystallographic, spectroscopic, and computational analysis of a flavin C4a-oxygen adduct in choline oxidase.

作者信息

Orville Allen M, Lountos George T, Finnegan Steffan, Gadda Giovanni, Prabhakar Rajeev

机构信息

Biology Department, Brookhaven National Laboratory, Upton, New York 11973-5000, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA.

出版信息

Biochemistry. 2009 Feb 3;48(4):720-8. doi: 10.1021/bi801918u.

Abstract

Flavin C4a-OO(H) and C4a-OH adducts are critical intermediates proposed in many flavoenzyme reaction mechanisms, but they are rarely detected even by rapid transient kinetics methods. We observe a trapped flavin C4a-OH or C4a-OO(H) adduct by single-crystal spectroscopic methods and in the 1.86 A resolution X-ray crystal structure of choline oxidase. The microspectrophotometry results show that the adduct forms rapidly in situ at 100 K upon exposure to X-rays. Density functional theory calculations establish the electronic structures for the flavin C4a-OH and C4a-OO(H) adducts and estimate the stabilization energy of several active site hydrogen bonds deduced from the crystal structure. We propose that the enzyme-bound FAD is reduced in the X-ray beam. The aerobic crystals then form either a C4a-OH or C4a-OO(H) adduct, but an insufficient proton inventory prevents their decay at cryogenic temperatures.

摘要

黄素C4a-OO(H)和C4a-OH加合物是许多黄素酶反应机制中提出的关键中间体,但即使通过快速瞬态动力学方法也很少能检测到它们。我们通过单晶光谱方法以及在胆碱氧化酶分辨率为1.86 Å的X射线晶体结构中观察到了捕获的黄素C4a-OH或C4a-OO(H)加合物。显微分光光度法结果表明,该加合物在100 K下暴露于X射线时会在原位迅速形成。密度泛函理论计算确定了黄素C4a-OH和C4a-OO(H)加合物的电子结构,并估计了从晶体结构推导的几个活性位点氢键的稳定能。我们提出,酶结合的FAD在X射线束中被还原。有氧晶体随后形成C4a-OH或C4a-OO(H)加合物,但质子存量不足阻止了它们在低温下的衰变。

相似文献

2
Evidence for proton tunneling and a transient covalent flavin-substrate adduct in choline oxidase S101A.
Biochim Biophys Acta Proteins Proteom. 2017 Nov;1865(11 Pt A):1470-1478. doi: 10.1016/j.bbapap.2017.08.004. Epub 2017 Aug 24.
3
A Reversible, Charge-Induced Intramolecular C4a-S-Cysteinyl-Flavin in Choline Oxidase Variant S101C.
Biochemistry. 2017 Dec 26;56(51):6677-6690. doi: 10.1021/acs.biochem.7b00958. Epub 2017 Dec 14.
4
Multiple pathways guide oxygen diffusion into flavoenzyme active sites.
Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10603-8. doi: 10.1073/pnas.0903809106. Epub 2009 Jun 16.
5
Protonation status and control mechanism of flavin-oxygen intermediates in the reaction of bacterial luciferase.
FEBS J. 2021 May;288(10):3246-3260. doi: 10.1111/febs.15653. Epub 2020 Dec 16.
6
Crystallization and preliminary X-ray analysis of the flavoenzyme vanillyl-alcohol oxidase from Penicillium simplicissimum.
Proteins. 1997 Apr;27(4):601-3. doi: 10.1002/(sici)1097-0134(199704)27:4<601::aid-prot12>3.0.co;2-o.
8
Flavin-N5 Covalent Intermediate in a Nonredox Dehalogenation Reaction Catalyzed by an Atypical Flavoenzyme.
Chembiochem. 2018 Jan 4;19(1):53-57. doi: 10.1002/cbic.201700594. Epub 2017 Dec 12.
9
Flavoenzyme structure and function. Approaches using flavin analogues.
Methods Mol Biol. 1999;131:157-79. doi: 10.1385/1-59259-266-X:157.

引用本文的文献

1
Unifying and versatile features of flavin-dependent monooxygenases: Diverse catalysis by a common C4a-(hydro)peroxyflavin.
J Biol Chem. 2023 Dec;299(12):105413. doi: 10.1016/j.jbc.2023.105413. Epub 2023 Nov 2.
2
Ultrafast photooxidation of protein-bound anionic flavin radicals.
Proc Natl Acad Sci U S A. 2022 Feb 22;119(8). doi: 10.1073/pnas.2118924119.
3
Structural and chemical trapping of flavin-oxide intermediates reveals substrate-directed reaction multiplicity.
Protein Sci. 2020 Jul;29(7):1655-1666. doi: 10.1002/pro.3879. Epub 2020 May 26.
4
Comparative Computational Approach To Study Enzyme Reactions Using QM and QM-MM Methods.
ACS Omega. 2018 Nov 2;3(11):14689-14703. doi: 10.1021/acsomega.8b02638. eCollection 2018 Nov 30.
5
Flavinium Catalysed Photooxidation: Detection and Characterization of Elusive Peroxyflavinium Intermediates.
Angew Chem Int Ed Engl. 2019 Oct 21;58(43):15412-15420. doi: 10.1002/anie.201906293. Epub 2019 Aug 23.
6
Enzymatic control of dioxygen binding and functionalization of the flavin cofactor.
Proc Natl Acad Sci U S A. 2018 May 8;115(19):4909-4914. doi: 10.1073/pnas.1801189115. Epub 2018 Apr 23.
7
Modulation of the flavin-protein interactions in NADH peroxidase and mercuric ion reductase: a resonance Raman study.
Eur Biophys J. 2018 Apr;47(3):205-223. doi: 10.1007/s00249-017-1245-3. Epub 2017 Sep 9.
8
Crystal Structure of Alcohol Oxidase from Pichia pastoris.
PLoS One. 2016 Feb 23;11(2):e0149846. doi: 10.1371/journal.pone.0149846. eCollection 2016.
9
Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers.
Chem Rev. 2014 Apr 23;114(8):4366-469. doi: 10.1021/cr400479b.
10
Human choline dehydrogenase: medical promises and biochemical challenges.
Arch Biochem Biophys. 2013 Sep 15;537(2):243-52. doi: 10.1016/j.abb.2013.07.018. Epub 2013 Jul 29.

本文引用的文献

1
Detection of a C4a-hydroperoxyflavin intermediate in the reaction of a flavoprotein oxidase.
Biochemistry. 2008 Aug 19;47(33):8485-90. doi: 10.1021/bi801039d. Epub 2008 Jul 25.
2
Role of Glu312 in binding and positioning of the substrate for the hydride transfer reaction in choline oxidase.
Biochemistry. 2008 Jan 8;47(1):243-56. doi: 10.1021/bi7017943. Epub 2007 Dec 12.
3
Synergy within structural biology of single crystal optical spectroscopy and X-ray crystallography.
Curr Opin Struct Biol. 2007 Oct;17(5):580-6. doi: 10.1016/j.sbi.2007.09.005. Epub 2007 Oct 23.
4
Hydroxyl radical-mediated modification of proteins as probes for structural proteomics.
Chem Rev. 2007 Aug;107(8):3514-43. doi: 10.1021/cr0682047.
5
Crystal structures of Fe2+ dioxygenase superoxo, alkylperoxo, and bound product intermediates.
Science. 2007 Apr 20;316(5823):453-7. doi: 10.1126/science.1134697.
6
Raman-assisted crystallography reveals end-on peroxide intermediates in a nonheme iron enzyme.
Science. 2007 Apr 20;316(5823):449-53. doi: 10.1126/science.1138885.
7
Structural basis for substrate binding and regioselective oxidation of monosaccharides at C3 by pyranose 2-oxidase.
J Biol Chem. 2006 Nov 17;281(46):35104-15. doi: 10.1074/jbc.M604718200. Epub 2006 Sep 19.
9
Kinetic mechanisms of the oxygenase from a two-component enzyme, p-hydroxyphenylacetate 3-hydroxylase from Acinetobacter baumannii.
J Biol Chem. 2006 Jun 23;281(25):17044-17053. doi: 10.1074/jbc.M512385200. Epub 2006 Apr 20.
10
To be or not to be an oxidase: challenging the oxygen reactivity of flavoenzymes.
Trends Biochem Sci. 2006 May;31(5):276-83. doi: 10.1016/j.tibs.2006.03.003. Epub 2006 Apr 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验