Sucharitakul Jeerus, Chaiyen Pimchai, Entsch Barrie, Ballou David P
Department of Biochemistry and Center for Excellence in Protein Structure & Function, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
Department of Biochemistry and Center for Excellence in Protein Structure & Function, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
J Biol Chem. 2006 Jun 23;281(25):17044-17053. doi: 10.1074/jbc.M512385200. Epub 2006 Apr 20.
p-Hydroxyphenylacetate hydroxylase (HPAH) from Acinetobacter baumannii catalyzes the hydroxylation of p-hydroxyphenylacetate (HPA) to form 3,4-dihydroxyphenylacetate (DHPA). The enzyme system is composed of two proteins: an FMN reductase (C1) and an oxygenase that uses FMNH- (C2). We report detailed transient kinetics studies at 4 degrees C of the reaction mechanism of C2.C2 binds rapidly and tightly to reduced FMN (Kd, 1.2 +/- 0.2 microm), but less tightly to oxidized FMN (Kd, 250 +/- 50 microm). The complex of C -FMNH-2 reacted with oxygen to form C(4a)-hydroperoxy-FMN at 1.1 +/- 0.1 x 10(6) m(-1) s(-1), whereas the C -FMNH-2 -HPA complex reacted with oxygen to form C(4a)-hydroperoxy-FMN-HPA more slowly (k = 4.8 +/- 0.2 x 10(4) m(-1) s(-1)). The kinetic mechanism of C2 was shown to be a preferential random order type, in which HPA or oxygen can initially bind to the C -FMNH-2 complex, but the preferred path was oxygen reacting with C -FMNH-2 to form the C(4a)-hydroperoxy-FMN intermediate prior to HPA binding. Hydroxylation occurs from the ternary complex with a rate constant of 20 s(-1) to form the C2-C(4a)-hydroxy-FMN-DHPA complex. At high HPA concentrations (>0.5 mm), HPA formed a dead end complex with the C2-C(4a)-hydroxy-FMN intermediate (similar to single component flavoprotein hydroxylases), thus inhibiting the bound flavin from returning to the oxidized form. When FADH- was used, C(4a)-hydroperoxy-FAD, C(4a)-hydroxy-FAD, and product were formed at rates similar to those with FMNH-. Thus, C2 has the unusual ability to use both common flavin cofactors in catalysis.
鲍曼不动杆菌的对羟基苯乙酸羟化酶(HPAH)催化对羟基苯乙酸(HPA)的羟化反应,生成3,4 - 二羟基苯乙酸(DHPA)。该酶系统由两种蛋白质组成:一种FMN还原酶(C1)和一种利用FMNH-的加氧酶(C2)。我们报告了在4℃下对C2反应机制进行的详细瞬态动力学研究。C2与还原型FMN快速紧密结合(解离常数Kd为1.2±0.2微摩尔),但与氧化型FMN结合较松(Kd为250±50微摩尔)。C - FMNH-2复合物与氧气反应,以1.1±0.1×10⁶米⁻¹秒⁻¹的速率形成C(4a)-氢过氧-FMN,而C - FMNH-2 - HPA复合物与氧气反应形成C(4a)-氢过氧-FMN - HPA的速率较慢(k = 4.8±0.2×10⁴米⁻¹秒⁻¹)。结果表明,C2的动力学机制是优先随机顺序类型,其中HPA或氧气最初都可以与C - FMNH-2复合物结合,但优先途径是氧气先与C - FMNH-2反应形成C(4a)-氢过氧-FMN中间体,然后HPA再结合。羟化反应从三元复合物以20秒⁻¹的速率常数发生,形成C2 - C(4a)-羟基-FMN - DHPA复合物。在高HPA浓度(>0.5毫米)下,HPA与C2 - C(4a)-羟基-FMN中间体形成了一个终产物复合物(类似于单组分黄素蛋白羟化酶),从而抑制结合的黄素恢复到氧化形式。当使用FADH-时,形成C(4a)-氢过氧-FAD、C(4a)-羟基-FAD和产物的速率与使用FMNH-时相似。因此,C2具有在催化过程中同时使用两种常见黄素辅因子的独特能力。