Suppr超能文献

高分辨率功能磁共振成像:克服信噪比问题。

High-resolution fMRI: overcoming the signal-to-noise problem.

作者信息

Tabelow Karsten, Piëch Valentin, Polzehl Jörg, Voss Henning U

机构信息

Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany.

出版信息

J Neurosci Methods. 2009 Apr 15;178(2):357-65. doi: 10.1016/j.jneumeth.2008.12.011. Epub 2008 Dec 14.

Abstract

Increasing the spatial resolution in functional Magnetic Resonance Imaging (fMRI) inherently lowers the signal-to-noise ratio (SNR). In order to still detect functionally significant activations in high-resolution images, spatial smoothing of the data is required. However, conventional non-adaptive smoothing comes with a reduced effective resolution, foiling the benefit of the higher acquisition resolution. We show how our recently proposed structural adaptive smoothing procedure for functional MRI data can improve signal detection of high-resolution fMRI experiments regardless of the lower SNR. The procedure is evaluated on human visual and sensory-motor mapping experiments. In these applications, the higher resolution could be fully utilized and high-resolution experiments were outperforming normal resolution experiments by means of both statistical significance and information content.

摘要

在功能磁共振成像(fMRI)中提高空间分辨率会固有地降低信噪比(SNR)。为了仍能在高分辨率图像中检测到功能上显著的激活,需要对数据进行空间平滑处理。然而,传统的非自适应平滑会降低有效分辨率,从而抵消了更高采集分辨率带来的益处。我们展示了我们最近提出的用于功能磁共振成像数据的结构自适应平滑程序如何能够提高高分辨率fMRI实验的信号检测能力,而不受较低SNR的影响。该程序在人类视觉和感觉运动映射实验中进行了评估。在这些应用中,可以充分利用更高的分辨率,并且高分辨率实验在统计显著性和信息含量方面均优于正常分辨率实验。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验