Suppr超能文献

使用结构自适应平滑程序分析功能磁共振成像实验。

Analyzing fMRI experiments with structural adaptive smoothing procedures.

作者信息

Tabelow Karsten, Polzehl Jörg, Voss Henning U, Spokoiny Vladimir

机构信息

Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117 Berlin, Germany.

出版信息

Neuroimage. 2006 Oct 15;33(1):55-62. doi: 10.1016/j.neuroimage.2006.06.029. Epub 2006 Aug 4.

Abstract

Data from functional magnetic resonance imaging (fMRI) consist of time series of brain images that are characterized by a low signal-to-noise ratio. In order to reduce noise and to improve signal detection, the fMRI data are spatially smoothed. However, the common application of a Gaussian filter does this at the cost of loss of information on spatial extent and shape of the activation area. We suggest to use the propagation-separation procedures introduced by Polzehl, J., Spokoiny, V. (2006). Propagation-separation approach for local likelihood estimation. Probab. Theory Relat. Fields, in print. instead. We show that this significantly improves the information on the spatial extent and shape of the activation region with similar results for the noise reduction. To complete the statistical analysis, signal detection is based on thresholds defined by random field theory. Effects of adaptive and non-adaptive smoothing are illustrated by artificial examples and an analysis of experimental data.

摘要

功能磁共振成像(fMRI)数据由脑图像的时间序列组成,其特点是信噪比低。为了降低噪声并改善信号检测,fMRI数据会进行空间平滑处理。然而,常用的高斯滤波器在进行此操作时会以损失激活区域的空间范围和形状信息为代价。我们建议改用Polzehl, J., Spokoiny, V.(2006年)提出的传播-分离程序。《局部似然估计的传播-分离方法》。《概率论及其相关领域》,即将出版。我们表明,这显著改善了关于激活区域空间范围和形状的信息,同时在降噪方面也有类似的效果。为了完成统计分析,信号检测基于随机场理论定义的阈值。通过人工示例和实验数据分析说明了自适应和平滑处理的效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验