Suppr超能文献

作为潜在高能量密度化合物的多硝基-1,3-双高戊省的理论研究

Theoretical studies on polynitro-1,3-bishomopentaprismanes as potential high energy density compounds.

作者信息

Qiu Limei, Gong Xuedong, Zheng Jian, Xiao Heming

机构信息

Department of Chemistry, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China.

出版信息

J Hazard Mater. 2009 Jul 30;166(2-3):931-8. doi: 10.1016/j.jhazmat.2008.11.099. Epub 2008 Dec 3.

Abstract

Based on the fully optimized molecular geometric structures at the DFT-B3LYP/6-31G* level, the densities (rho), detonation velocities (D) and pressures (P) for a series of polynitro-1,3-bishomopentaprismanes (PNBPPs), as well as their thermal stabilities, were investigated to look for high energy density compounds (HEDCs). The studied PNBPPs have high values of heats of formation (HOFs) and the magnitude is correlative with the number (n) and the space distance of nitro groups. D and P for PNBPPs were estimated by using modified Kamlet-Jacobs equations based on the calculated HOFs and rho. It is found that rho, D and P all increase with n and satisfy the group additivity rule. The calculations on the bond dissociation energies of C_NO(2) and C_C bonds indicate that both bonds are possible to be the trigger bond in the pyrolysis process, and this interesting phenomenon is related with the molecular structure, especially the strain energy of the skeleton. In conjunction with the energetic performances and thermal stabilities, PNBPPs with n=8-12 are recommended as the preferred candidates of HEDCs. These results would provide basic information for the further studies of PNBPPs.

摘要

基于在DFT - B3LYP/6 - 31G*水平上完全优化的分子几何结构,研究了一系列多硝基-1,3-双高戊并戊烷(PNBPPs)的密度(rho)、爆速(D)和压力(P)及其热稳定性,以寻找高能量密度化合物(HEDCs)。所研究的PNBPPs具有较高的生成热(HOFs)值,其大小与硝基的数量(n)和空间距离相关。基于计算得到的HOFs和rho,使用修正的Kamlet - Jacobs方程估算了PNBPPs的D和P。发现rho、D和P均随n增加,且满足基团加和规则。对C_NO(2)和C_C键的键解离能计算表明,这两种键在热解过程中都有可能成为引发键,这种有趣的现象与分子结构有关,尤其是骨架的应变能。结合能量性能和热稳定性,推荐n = 8 - 12的PNBPPs作为HEDCs的首选候选物。这些结果将为PNBPPs的进一步研究提供基础信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验