Zhao Xiangbo, Yu Shengwei, Ranguelova Kalina, Suarez Javier, Metlitsky Leonid, Schelvis Johannes P M, Magliozzo Richard S
Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, USA.
J Biol Chem. 2009 Mar 13;284(11):7030-7. doi: 10.1074/jbc.M808107200. Epub 2009 Jan 12.
Catalase-peroxidase (KatG) is essential in Mycobacterium tuberculosis for oxidative stress management and activation of the antitubercular pro-drug isoniazid. The role of a unique distal side adduct found in KatG enzymes, involving linked side chains of residues Met255, Tyr229, and Trp107 (MYW), in the unusual catalase activity of KatG is addressed here and in our companion paper (Suarez, J., Ranguelova, K., Jarzecki, A. A., Manzerova, J., Krymov, V., Zhao, X., Yu, S., Metlitsky, L., Gerfen, G. J., and Magliozzo, R. S. (2009) J. Biol. Chem. 284, in press). The KatG[W107F] mutant exhibited severely reduced catalase activity yet normal peroxidase activity, and as isolated contains more abundant 6-coordinate heme in high spin and low spin forms compared with the wild-type enzyme. Most interestingly, oxyferrous heme is also found in the purified enzyme. Oxyferrous KatG[W107F] was prepared by photolysis in air of the carbonyl enzyme or was generated using hydrogen peroxide decayed with a t1/2 of 2 days compared with 6 min for wild-type protein. The stability of oxyenyzme was modestly enhanced in KatG[Y229F] but was not affected in KatG[M255A]. Optical stopped-flow experiments showed rapid formation of Compound I in KatG[W107F] and facile formation of oxyferrous heme in the presence of micromolar hydrogen peroxide. An analysis of the relationships between catalase activity, stability of oxyferrous enzyme, and a proposed MYW adduct radical is presented. The loss of catalase function is assigned to the loss of the MYW adduct radical and structural changes that lead to greatly enhanced stability of oxyenzyme, an intermediate of the catalase cycle of native enzyme.
过氧化氢酶 - 过氧化物酶(KatG)在结核分枝杆菌中对于氧化应激管理和抗结核前药异烟肼的激活至关重要。本文及我们的姊妹论文(苏亚雷斯,J.,兰盖洛娃,K.,贾泽茨基,A. A.,曼泽罗娃,J.,克里莫夫,V.,赵,X.,于,S.,梅特利茨基,L.,格芬,G. J.,和马廖佐,R. S.(2009)《生物化学杂志》284,即将发表)探讨了在KatG酶中发现的一种独特的远端侧加合物的作用,该加合物涉及残基Met255、Tyr229和Trp107(MYW)的连接侧链,与KatG异常的过氧化氢酶活性有关。KatG[W107F]突变体的过氧化氢酶活性严重降低,但过氧化物酶活性正常,并且与野生型酶相比,分离得到的该突变体含有更丰富的高自旋和低自旋形式的六配位血红素。最有趣的是,在纯化的酶中也发现了亚铁血红素氧合物。通过在空气中对羰基酶进行光解制备了亚铁血红素氧合物KatG[W107F],或者使用半衰期为2天的过氧化氢生成,而野生型蛋白的半衰期为6分钟。在KatG[Y229F]中,氧合酶的稳定性略有增强,但在KatG[M255A]中不受影响。光学停流实验表明,在KatG[W107F]中快速形成化合物I,并且在微摩尔过氧化氢存在下容易形成亚铁血红素氧合物。本文分析了过氧化氢酶活性、亚铁血红素氧合酶稳定性与提出的MYW加合物自由基之间的关系。过氧化氢酶功能的丧失归因于MYW加合物自由基的丧失以及导致氧合酶稳定性大大增强的结构变化,氧合酶是天然酶过氧化氢酶循环的中间体。