Suppr超能文献

多稳态分组中线索整合的贝叶斯框架:之字形晶格中的接近度、共线性和方向先验

A Bayesian framework for cue integration in multistable grouping: Proximity, collinearity, and orientation priors in zigzag lattices.

作者信息

Claessens Peter M E, Wagemans Johan

机构信息

Laboratory of Experimental Psychology, Department of Psychology, University of Leuven, Belgium.

出版信息

J Vis. 2008 Dec 24;8(7):33.1-23. doi: 10.1167/8.7.33.

Abstract

Integration of proximity and good continuation cues is analyzed as a probabilistic inference problem in contour grouping. A Bayesian framework was tested in a multistable dot lattice experiment. In rectangular lattices, distance ratio and global orientation of rows and columns were manipulated. Discollinearity was introduced by imposing zigzag in one orientation, by either fixed or stochastic displacement of elements. Results indicate that proximity and good continuation are generally treated as independent sources of information, added to prior orientation log-odds to produce the odds of grouping percepts. Distance likelihood is well captured by a power law, and discollinearity likelihoods by generalized Laplace distributions, with higher kurtosis for stochastic zigzag. While observers prefer vertical over horizontal orientations, the exact prior distribution is idiosyncratic. Perceptual grouping along cardinal axes is less affected by distance, but more by discollinearity, than along oblique orientations. Results are qualitatively and quantitatively compared to ecological statistics of contours (J. H. Elder & R. M. Goldberg, 2002). The potential of hierarchically extended Bayes models for a better understanding of principles in cue integration is discussed.

摘要

在轮廓分组中,将接近性线索和良好连续性线索的整合作为一个概率推理问题进行分析。在一个多稳态点格实验中对贝叶斯框架进行了测试。在矩形点阵中,操纵行和列的距离比和全局方向。通过在一个方向上施加锯齿形,通过元素的固定或随机位移来引入不共线性。结果表明,接近性和良好连续性通常被视为独立的信息源,添加到先验方向对数几率中以产生分组感知的几率。距离似然性可以通过幂律很好地捕捉,不共线性似然性可以通过广义拉普拉斯分布捕捉,随机锯齿形的峰度更高。虽然观察者更喜欢垂直方向而不是水平方向,但确切的先验分布是因人而异的。与沿倾斜方向相比,沿主轴的感知分组受距离的影响较小,但受不共线性的影响更大。将结果与轮廓的生态统计(J. H. 埃尔德和R. M. 戈德堡,2002年)进行了定性和定量比较。讨论了分层扩展贝叶斯模型在更好地理解线索整合原理方面的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验