Froyen Vicky, Feldman Jacob, Singh Manish
Department of Psychology, Center for Cognitive Science, Rutgers University.
Psychol Rev. 2015 Oct;122(4):575-97. doi: 10.1037/a0039540. Epub 2015 Aug 31.
We propose a novel framework for perceptual grouping based on the idea of mixture models, called Bayesian hierarchical grouping (BHG). In BHG, we assume that the configuration of image elements is generated by a mixture of distinct objects, each of which generates image elements according to some generative assumptions. Grouping, in this framework, means estimating the number and the parameters of the mixture components that generated the image, including estimating which image elements are "owned" by which objects. We present a tractable implementation of the framework, based on the hierarchical clustering approach of Heller and Ghahramani (2005). We illustrate it with examples drawn from a number of classical perceptual grouping problems, including dot clustering, contour integration, and part decomposition. Our approach yields an intuitive hierarchical representation of image elements, giving an explicit decomposition of the image into mixture components, along with estimates of the probability of various candidate decompositions. We show that BHG accounts well for a diverse range of empirical data drawn from the literature. Because BHG provides a principled quantification of the plausibility of grouping interpretations over a wide range of grouping problems, we argue that it provides an appealing unifying account of the elusive Gestalt notion of Prägnanz.
我们基于混合模型的思想提出了一种用于感知分组的新颖框架,称为贝叶斯层次分组(BHG)。在BHG中,我们假设图像元素的配置是由不同对象的混合生成的,每个对象根据一些生成假设生成图像元素。在此框架中,分组意味着估计生成图像的混合成分的数量和参数,包括估计哪些图像元素由哪些对象“拥有”。我们基于Heller和Ghahramani(2005)的层次聚类方法,给出了该框架的一种易于处理的实现方式。我们用从一些经典感知分组问题中选取的例子进行说明,包括点聚类、轮廓整合和部分分解。我们的方法产生了一种直观的图像元素层次表示,将图像明确分解为混合成分,并给出各种候选分解的概率估计。我们表明,BHG能够很好地解释从文献中获取的各种经验数据。由于BHG在广泛的分组问题上为分组解释的合理性提供了有原则的量化,我们认为它为难以捉摸的格式塔简洁性概念提供了一个有吸引力的统一解释。