Yang Peilin, Mao Yingwei, Lee Angel W-M, Kennedy Robert T
Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA.
Electrophoresis. 2009 Feb;30(3):457-64. doi: 10.1002/elps.200800397.
Fluorescence anisotropy (FA), non-equilibrium CE of equilibrium mixtures (NECEEM) and high-speed CE were evaluated for measuring dissociation kinetics of peptide-protein binding systems. Fyn-SH3-SH2, a protein construct consisting of the src homology 2 (SH2) and 3 (SH3) domain of the protein Fyn, and a fluorescein-labeled phosphopeptide were used as a model system. All three methods gave comparable half-life of approximately 53 s for Fyn-SH3-SH2:peptide complex. Achieving satisfactory results by NECEEM required columns over 30 cm long. When using Fyn-SH2-SH3 tagged with glutathione S-transferase (GST) as the binding protein, both FA and NECEEM assays gave evidence of two complexes forming with the peptide, yet neither method allowed accurate measurement of dissociation rates for both complexes because of a lack of resolution. High-speed CE, with a 7 s separation time, enabled separation of both complexes and allowed determination of dissociation rate of both complexes independently. The two complexes had half-lives of 22.0+/-2.7 and 58.8+/-6.1 s, respectively. Concentration studies revealed that the GST-Fyn-SH3-SH2 protein formed a dimer so that complexes had binding ratios of 2:1 (protein-to-peptide ratio) and 2:2. Our results demonstrate that although all methods are suitable for 1:1 binding systems, high-speed CE is unique in allowing multiple complexes to be resolved simultaneously. This property allows determination of binding kinetics of complicated systems and makes the technique useful for discovering novel affinity interactions.
对荧光各向异性(FA)、平衡混合物的非平衡毛细管电泳(NECEEM)和高速毛细管电泳进行了评估,以测量肽-蛋白质结合系统的解离动力学。使用由Fyn蛋白的src同源结构域2(SH2)和3(SH3)组成的蛋白质构建体Fyn-SH3-SH2以及荧光素标记的磷酸肽作为模型系统。对于Fyn-SH3-SH2:肽复合物,所有这三种方法得出的半衰期相当,约为53秒。通过NECEEM获得满意结果需要使用长度超过30厘米的柱子。当使用标记有谷胱甘肽S-转移酶(GST)的Fyn-SH2-SH3作为结合蛋白时,FA和NECEEM分析均显示与该肽形成了两种复合物,但由于缺乏分辨率,两种方法均无法准确测量两种复合物的解离速率。分离时间为7秒的高速毛细管电泳能够分离两种复合物,并允许独立测定两种复合物的解离速率。这两种复合物的半衰期分别为22.0±2.7秒和58.8±6.1秒。浓度研究表明,GST-Fyn-SH3-SH2蛋白形成了二聚体,因此复合物的结合比为2:1(蛋白质与肽的比例)和2:2。我们的结果表明,尽管所有方法都适用于1:1结合系统,但高速毛细管电泳的独特之处在于能够同时解析多种复合物。这一特性使得能够确定复杂系统的结合动力学,并使该技术可用于发现新型亲和相互作用。