Suppr超能文献

基于分割的单细胞免疫印迹分析。

Segmentation-based analysis of single-cell immunoblots.

机构信息

Department of Bioengineering, University of California, Berkeley, CA, USA.

UC Berkeley/UCSF Graduate Program in Bioengineering, University of California, Berkeley, CA, USA.

出版信息

Electrophoresis. 2021 Oct;42(20):2070-2080. doi: 10.1002/elps.202100144. Epub 2021 Sep 6.

Abstract

From genomics to transcriptomics to proteomics, microfluidic tools underpin recent advances in single-cell biology. Detection of specific proteoforms-with single-cell resolution-presents challenges in detection specificity and sensitivity. Miniaturization of protein immunoblots to single-cell resolution mitigates these challenges. For example, in microfluidic western blotting, protein targets are separated by electrophoresis and subsequently detected using fluorescently labeled antibody probes. To quantify the expression level of each protein target, the fluorescent protein bands are fit to Gaussians; yet, this method is difficult to use with noisy, low-abundance, or low-SNR protein bands, and with significant band skew or dispersion. In this study, we investigate segmentation-based approaches to robustly quantify protein bands from single-cell protein immunoblots. As compared to a Gaussian fitting pipeline, the segmentation pipeline detects >1.5× more protein bands for downstream quantification as well as more of the low-abundance protein bands (i.e., with SNR ∼3). Utilizing deep learning-based segmentation approaches increases the recovery of low-SNR protein bands by an additional 50%. However, we find that segmentation-based approaches are less robust at quantifying poorly resolved protein bands (separation resolution, R < 0.6). With burgeoning needs for more single-cell protein analysis tools, we see microfluidic separations as benefitting substantially from segmentation-based analysis approaches.

摘要

从基因组学到转录组学再到蛋白质组学,微流控工具为单细胞生物学的最新进展提供了支持。具有单细胞分辨率的特定蛋白形式的检测在检测特异性和灵敏度方面带来了挑战。将蛋白质免疫印迹小型化为单细胞分辨率可以缓解这些挑战。例如,在微流控 Western blot 中,蛋白质靶标通过电泳分离,然后使用荧光标记的抗体探针进行检测。为了定量每个蛋白质靶标的表达水平,将荧光蛋白条带拟合为高斯分布;然而,这种方法对于噪声大、丰度低或信噪比低的蛋白条带以及显著的条带倾斜或分散的情况很难使用。在这项研究中,我们研究了基于分割的方法,以从单细胞蛋白质免疫印迹中稳健地定量蛋白条带。与高斯拟合流水线相比,分割流水线可检测到更多用于下游定量的蛋白条带,以及更多的低丰度蛋白条带(即 SNR∼3)。基于深度学习的分割方法可使低 SNR 蛋白条带的恢复量增加额外的 50%。然而,我们发现分割方法在量化分辨率较差的蛋白条带(分离分辨率 R<0.6)时不太稳健。随着对更多单细胞蛋白质分析工具的需求不断增长,我们认为微流控分离将从基于分割的分析方法中受益匪浅。

相似文献

1
Segmentation-based analysis of single-cell immunoblots.基于分割的单细胞免疫印迹分析。
Electrophoresis. 2021 Oct;42(20):2070-2080. doi: 10.1002/elps.202100144. Epub 2021 Sep 6.
2
Advances of Single-Cell Protein Analysis.单细胞蛋白质分析的进展。
Cells. 2020 May 20;9(5):1271. doi: 10.3390/cells9051271.
3
Microfluidic integration for automated targeted proteomic assays.微流控集成用于自动化靶向蛋白质组学分析。
Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):5972-7. doi: 10.1073/pnas.1108617109. Epub 2012 Apr 2.

本文引用的文献

1
Single-cell analysis targeting the proteome.针对蛋白质组的单细胞分析。
Nat Rev Chem. 2020 Mar;4(3):143-158. doi: 10.1038/s41570-020-0162-7. Epub 2020 Feb 17.
2
Summit: Automated Analysis of Arrayed Single-Cell Gel Electrophoresis.峰会:阵列单细胞凝胶电泳的自动化分析。
SLAS Technol. 2021 Dec;26(6):637-649. doi: 10.1177/24726303211036869. Epub 2021 Sep 2.
8
A systematic approach to quantitative Western blot analysis.一种定量 Western blot 分析的系统方法。
Anal Biochem. 2020 Mar 15;593:113608. doi: 10.1016/j.ab.2020.113608. Epub 2020 Jan 31.
10
CellProfiler 3.0: Next-generation image processing for biology.CellProfiler 3.0:生物学的下一代图像处理。
PLoS Biol. 2018 Jul 3;16(7):e2005970. doi: 10.1371/journal.pbio.2005970. eCollection 2018 Jul.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验