Suppr超能文献

货物施加力在轴突运输中的作用的定量研究。

A quantitative examination of the role of cargo-exerted forces in axonal transport.

机构信息

Laboratory for Neuroengineering, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.

出版信息

J Theor Biol. 2009 Apr 7;257(3):430-7. doi: 10.1016/j.jtbi.2008.12.011. Epub 2008 Dec 24.

Abstract

Axonal transport, via molecular motors kinesin and dynein, is a critical process in supplying the necessary constituents to maintain normal neuronal function. In this study, we predict the role of cooperativity by motors of the same polarity across the entire spectrum of physiological axonal transport. That is, we examined how the number of motors, either kinesin or dynein, working together to move a cargo, results in the experimentally determined velocity profiles seen in fast and slow anterograde and retrograde transport. We quantified the physiological forces exerted on a motor by a cargo as a function of cargo size, transport velocity, and transport type. Our results show that the force exerted by our base case neurofilament (D(NF)=10 nm, L(NF)=1.6 microm) is approximately 1.25 pN at 600 nm/s; additionally, the force exerted by our base case organelle (D(org)=1 microm) at 1000 nm/s is approximately 5.7 pN. Our results indicate that while a single motor can independently carry an average cargo, cooperativity is required to produce the experimental velocity profiles for fast transport. However, no cooperativity is required to produce the slow transport velocity profiles; thus, a single dynein or kinesin can carry the average neurofilament retrogradely or anterogradely, respectively. The potential role cooperativity may play in the hypothesized mechanisms of motoneuron transport diseases such as amyotrophic lateral sclerosis (ALS) is discussed.

摘要

轴突运输是通过分子马达驱动蛋白和动力蛋白来完成的,是为维持正常神经元功能提供必要成分的关键过程。在这项研究中,我们预测了同极性马达在整个生理轴突运输范围内的协同作用。也就是说,我们研究了在正向和逆向快速运输和慢速运输中,作用于货物的马达(无论是驱动蛋白还是动力蛋白)的数量如何协同工作,从而导致实验确定的速度分布。我们将马达对货物施加的生理力作为货物大小、运输速度和运输类型的函数进行了量化。我们的结果表明,我们的基础神经丝(D(NF)= 10nm,L(NF)= 1.6μm)的力约为 600nm/s 时的 1.25pN;此外,我们的基础细胞器(D(org)= 1μm)在 1000nm/s 时的力约为 5.7pN。我们的结果表明,虽然单个马达可以独立地携带平均货物,但协同作用是产生快速运输实验速度分布所必需的。然而,产生慢速运输速度分布不需要协同作用;因此,单个动力蛋白或驱动蛋白可以分别将平均神经丝逆行或顺行运输。讨论了协同作用在肌萎缩性侧索硬化症(ALS)等运动神经元运输疾病假设机制中可能发挥的作用。

相似文献

1
A quantitative examination of the role of cargo-exerted forces in axonal transport.
J Theor Biol. 2009 Apr 7;257(3):430-7. doi: 10.1016/j.jtbi.2008.12.011. Epub 2008 Dec 24.
2
Effects of ALS-related SOD1 mutants on dynein- and KIF5-mediated retrograde and anterograde axonal transport.
Biochim Biophys Acta. 2010 Sep;1802(9):707-16. doi: 10.1016/j.bbadis.2010.05.008. Epub 2010 May 25.
4
Number of kinesins engaged in axonal cargo transport: A novel biomarker for neurological disorders.
Neurosci Res. 2023 Dec;197:25-30. doi: 10.1016/j.neures.2023.09.004. Epub 2023 Sep 19.
6
Drosophila Miro is required for both anterograde and retrograde axonal mitochondrial transport.
J Neurosci. 2009 Apr 29;29(17):5443-55. doi: 10.1523/JNEUROSCI.5417-08.2009.
7
Cytoplasmic dynein is associated with slow axonal transport.
Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):141-4. doi: 10.1073/pnas.93.1.141.
9
Kinesin-1 and Dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons.
Mol Biol Cell. 2006 Apr;17(4):2057-68. doi: 10.1091/mbc.e05-06-0526. Epub 2006 Feb 8.
10
Insights on UNC-104-dynein/dynactin interactions and their implications on axonal transport in Caenorhabditis elegans.
J Neurosci Res. 2019 Feb;97(2):185-201. doi: 10.1002/jnr.24339. Epub 2018 Oct 12.

引用本文的文献

1
Episodic transport of protein aggregates achieves a positive size selectivity in aggresome formation.
Nat Commun. 2025 Aug 22;16(1):7852. doi: 10.1038/s41467-025-62751-5.
2
Action potential as a contributing factor in axonal transport: a numerical study.
Phys Eng Sci Med. 2025 Jul 21. doi: 10.1007/s13246-025-01591-5.
3
Estimating three-dimensional outflow and pressure gradients within the human eye.
PLoS One. 2019 Apr 9;14(4):e0214961. doi: 10.1371/journal.pone.0214961. eCollection 2019.
4
Neurofilaments and Neurofilament Proteins in Health and Disease.
Cold Spring Harb Perspect Biol. 2017 Apr 3;9(4):a018309. doi: 10.1101/cshperspect.a018309.
5
Seeking homeostasis: temporal trends in respiration, oxidation, and calcium in SOD1 G93A Amyotrophic Lateral Sclerosis mice.
Front Cell Neurosci. 2015 Jul 1;9:248. doi: 10.3389/fncel.2015.00248. eCollection 2015.
6
State of the field: An informatics-based systematic review of the SOD1-G93A amyotrophic lateral sclerosis transgenic mouse model.
Amyotroph Lateral Scler Frontotemporal Degener. 2015;17(1-2):1-14. doi: 10.3109/21678421.2015.1047455. Epub 2015 May 22.
8
Neurofilaments are flexible polymers that often fold and unfold, but they move in a fully extended configuration.
Cytoskeleton (Hoboken). 2012 Jul;69(7):535-44. doi: 10.1002/cm.21039. Epub 2012 Jun 12.
9
Interaction with a kinesin-2 tail propels choline acetyltransferase flow towards synapse.
Traffic. 2012 Jul;13(7):979-91. doi: 10.1111/j.1600-0854.2012.01361.x. Epub 2012 Apr 26.
10
Cargo distributions differentiate pathological axonal transport impairments.
J Theor Biol. 2012 May 7;300:277-91. doi: 10.1016/j.jtbi.2012.01.019. Epub 2012 Jan 25.

本文引用的文献

1
Intracellular imaging of targeted proteins labeled with quantum dots.
Exp Cell Res. 2008 Nov 15;314(19):3563-9. doi: 10.1016/j.yexcr.2008.09.014. Epub 2008 Sep 26.
2
Tug-of-war as a cooperative mechanism for bidirectional cargo transport by molecular motors.
Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4609-14. doi: 10.1073/pnas.0706825105. Epub 2008 Mar 17.
3
Differential expression of molecular motors in the motor cortex of sporadic ALS.
Neurobiol Dis. 2007 Jun;26(3):577-89. doi: 10.1016/j.nbd.2007.02.005. Epub 2007 Feb 16.
4
Interaction between familial amyotrophic lateral sclerosis (ALS)-linked SOD1 mutants and the dynein complex.
J Biol Chem. 2007 Jun 1;282(22):16691-9. doi: 10.1074/jbc.M609743200. Epub 2007 Apr 2.
5
Neurofilaments switch between distinct mobile and stationary states during their transport along axons.
J Neurosci. 2007 Jan 17;27(3):507-16. doi: 10.1523/JNEUROSCI.4227-06.2007.
6
Essential role of the persistent sodium current in spike initiation during slowly rising inputs in mouse spinal neurones.
J Physiol. 2006 Aug 1;574(Pt 3):819-34. doi: 10.1113/jphysiol.2006.107094. Epub 2006 May 25.
7
A dynein mutation attenuates motor neuron degeneration in SOD1(G93A) mice.
Exp Neurol. 2006 Mar;198(1):271-4. doi: 10.1016/j.expneurol.2005.12.005. Epub 2006 Jan 20.
8
Cooperative cargo transport by several molecular motors.
Proc Natl Acad Sci U S A. 2005 Nov 29;102(48):17284-9. doi: 10.1073/pnas.0507363102. Epub 2005 Nov 15.
9
A simple theoretical model explains dynein's response to load.
Biophys J. 2006 Feb 1;90(3):811-21. doi: 10.1529/biophysj.105.073189. Epub 2005 Nov 11.
10
Is spinal muscular atrophy the result of defects in motor neuron processes?
Bioessays. 2005 Sep;27(9):946-57. doi: 10.1002/bies.20283.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验