Russo Gary J, Louie Kathryn, Wellington Andrea, Macleod Greg T, Hu Fangle, Panchumarthi Sarvari, Zinsmaier Konrad E
Arizona Research Laboratories Division of Neurobiology, University of Arizona, Tucson, Arizona 85721-0077, USA.
J Neurosci. 2009 Apr 29;29(17):5443-55. doi: 10.1523/JNEUROSCI.5417-08.2009.
Microtubule-based transport of mitochondria into dendrites and axons is vital for sustaining neuronal function. Transport along microtubule tracks proceeds in a series of plus and minus end-directed movements that are facilitated by kinesin and dynein motors. How the opposing movements are controlled to achieve effective transport over large distances remains unclear. Previous studies showed that the conserved mitochondrial GTPase Miro is required for mitochondrial transport into axons and dendrites and serves as a Ca(2+) sensor that controls mitochondrial mobility. To directly examine Miro's significance for kinesin- and/or dynein-mediated mitochondrial motility, we live-imaged movements of GFP-tagged mitochondria in larval Drosophila motor axons upon genetic manipulations of Miro. Loss of Drosophila Miro (dMiro) reduced the effectiveness of both anterograde and retrograde mitochondrial transport by selectively impairing kinesin- or dynein-mediated movements, depending on the direction of net transport. Net anterogradely transported mitochondria exhibited reduced kinesin- but normal dynein-mediated movements. Net retrogradely transported mitochondria exhibited much shorter dynein-mediated movements, whereas kinesin-mediated movements were minimally affected. In both cases, the duration of short stationary phases increased proportionally. Overexpression (OE) of dMiro also impaired the effectiveness of mitochondrial transport. Finally, loss and OE of dMiro altered the length of mitochondria in axons through a mechanistically separate pathway. We suggest that dMiro promotes effective antero- and retrograde mitochondrial transport by extending the processivity of kinesin and dynein motors according to a mitochondrion's programmed direction of transport.
基于微管的线粒体向树突和轴突的运输对于维持神经元功能至关重要。沿着微管轨道的运输通过由驱动蛋白和动力蛋白驱动的一系列正向和负向运动进行。如何控制相反方向的运动以实现长距离的有效运输仍不清楚。先前的研究表明,保守的线粒体GTP酶Miro是线粒体运输到轴突和树突所必需的,并且作为控制线粒体移动性的Ca(2+)传感器。为了直接研究Miro对驱动蛋白和/或动力蛋白介导的线粒体运动性的重要性,我们在对Miro进行基因操作后,对幼虫果蝇运动轴突中绿色荧光蛋白标记的线粒体的运动进行了实时成像。果蝇Miro(dMiro)的缺失通过选择性地损害驱动蛋白或动力蛋白介导的运动,降低了顺行和逆行线粒体运输的效率,这取决于净运输的方向。净顺行运输的线粒体表现出驱动蛋白介导的运动减少,但动力蛋白介导的运动正常。净逆行运输的线粒体表现出动力蛋白介导的运动短得多,而驱动蛋白介导的运动受到的影响最小。在这两种情况下,短静止期的持续时间成比例增加。dMiro的过表达(OE)也损害了线粒体运输的效率。最后,dMiro的缺失和OE通过一个机制上独立的途径改变了轴突中线粒体的长度。我们认为,dMiro通过根据线粒体编程的运输方向延长驱动蛋白和动力蛋白的持续运动能力,促进有效的顺行和逆行线粒体运输。