Suppr超能文献

果蝇Miro对于轴突线粒体的顺行和逆行运输均是必需的。

Drosophila Miro is required for both anterograde and retrograde axonal mitochondrial transport.

作者信息

Russo Gary J, Louie Kathryn, Wellington Andrea, Macleod Greg T, Hu Fangle, Panchumarthi Sarvari, Zinsmaier Konrad E

机构信息

Arizona Research Laboratories Division of Neurobiology, University of Arizona, Tucson, Arizona 85721-0077, USA.

出版信息

J Neurosci. 2009 Apr 29;29(17):5443-55. doi: 10.1523/JNEUROSCI.5417-08.2009.

Abstract

Microtubule-based transport of mitochondria into dendrites and axons is vital for sustaining neuronal function. Transport along microtubule tracks proceeds in a series of plus and minus end-directed movements that are facilitated by kinesin and dynein motors. How the opposing movements are controlled to achieve effective transport over large distances remains unclear. Previous studies showed that the conserved mitochondrial GTPase Miro is required for mitochondrial transport into axons and dendrites and serves as a Ca(2+) sensor that controls mitochondrial mobility. To directly examine Miro's significance for kinesin- and/or dynein-mediated mitochondrial motility, we live-imaged movements of GFP-tagged mitochondria in larval Drosophila motor axons upon genetic manipulations of Miro. Loss of Drosophila Miro (dMiro) reduced the effectiveness of both anterograde and retrograde mitochondrial transport by selectively impairing kinesin- or dynein-mediated movements, depending on the direction of net transport. Net anterogradely transported mitochondria exhibited reduced kinesin- but normal dynein-mediated movements. Net retrogradely transported mitochondria exhibited much shorter dynein-mediated movements, whereas kinesin-mediated movements were minimally affected. In both cases, the duration of short stationary phases increased proportionally. Overexpression (OE) of dMiro also impaired the effectiveness of mitochondrial transport. Finally, loss and OE of dMiro altered the length of mitochondria in axons through a mechanistically separate pathway. We suggest that dMiro promotes effective antero- and retrograde mitochondrial transport by extending the processivity of kinesin and dynein motors according to a mitochondrion's programmed direction of transport.

摘要

基于微管的线粒体向树突和轴突的运输对于维持神经元功能至关重要。沿着微管轨道的运输通过由驱动蛋白和动力蛋白驱动的一系列正向和负向运动进行。如何控制相反方向的运动以实现长距离的有效运输仍不清楚。先前的研究表明,保守的线粒体GTP酶Miro是线粒体运输到轴突和树突所必需的,并且作为控制线粒体移动性的Ca(2+)传感器。为了直接研究Miro对驱动蛋白和/或动力蛋白介导的线粒体运动性的重要性,我们在对Miro进行基因操作后,对幼虫果蝇运动轴突中绿色荧光蛋白标记的线粒体的运动进行了实时成像。果蝇Miro(dMiro)的缺失通过选择性地损害驱动蛋白或动力蛋白介导的运动,降低了顺行和逆行线粒体运输的效率,这取决于净运输的方向。净顺行运输的线粒体表现出驱动蛋白介导的运动减少,但动力蛋白介导的运动正常。净逆行运输的线粒体表现出动力蛋白介导的运动短得多,而驱动蛋白介导的运动受到的影响最小。在这两种情况下,短静止期的持续时间成比例增加。dMiro的过表达(OE)也损害了线粒体运输的效率。最后,dMiro的缺失和OE通过一个机制上独立的途径改变了轴突中线粒体的长度。我们认为,dMiro通过根据线粒体编程的运输方向延长驱动蛋白和动力蛋白的持续运动能力,促进有效的顺行和逆行线粒体运输。

相似文献

1
Drosophila Miro is required for both anterograde and retrograde axonal mitochondrial transport.
J Neurosci. 2009 Apr 29;29(17):5443-55. doi: 10.1523/JNEUROSCI.5417-08.2009.
2
Miro's N-terminal GTPase domain is required for transport of mitochondria into axons and dendrites.
J Neurosci. 2015 Apr 8;35(14):5754-71. doi: 10.1523/JNEUROSCI.1035-14.2015.
3
A new mode of mitochondrial transport and polarized sorting regulated by Dynein, Milton and Miro.
Development. 2016 Nov 15;143(22):4203-4213. doi: 10.1242/dev.138289. Epub 2016 Oct 5.
4
The GTPase dMiro is required for axonal transport of mitochondria to Drosophila synapses.
Neuron. 2005 Aug 4;47(3):379-93. doi: 10.1016/j.neuron.2005.06.027.
5
Kinesin-1 and Dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons.
Mol Biol Cell. 2006 Apr;17(4):2057-68. doi: 10.1091/mbc.e05-06-0526. Epub 2006 Feb 8.
6
The axonal transport of mitochondria.
J Cell Sci. 2005 Dec 1;118(Pt 23):5411-9. doi: 10.1242/jcs.02745.
7
Mitochondrial transport dynamics in axons and dendrites.
Results Probl Cell Differ. 2009;48:107-39. doi: 10.1007/400_2009_20.
8
The axonal transport of mitochondria.
J Cell Sci. 2012 May 1;125(Pt 9):2095-104. doi: 10.1242/jcs.053850. Epub 2012 May 22.
9
Mitofusin 2 is necessary for transport of axonal mitochondria and interacts with the Miro/Milton complex.
J Neurosci. 2010 Mar 24;30(12):4232-40. doi: 10.1523/JNEUROSCI.6248-09.2010.

引用本文的文献

1
mRNA trafficking directs cell-size-scaling of mitochondria distribution and function.
Nat Commun. 2025 Jul 31;16(1):7029. doi: 10.1038/s41467-025-61940-6.
2
Synaptic-mitochondrial transport: mechanisms in neural adaptation and degeneration.
Mol Cell Biochem. 2025 Jun;480(6):3399-3411. doi: 10.1007/s11010-025-05209-y. Epub 2025 Jan 22.
6
Interaction between the mitochondrial adaptor MIRO and the motor adaptor TRAK.
J Biol Chem. 2023 Dec;299(12):105441. doi: 10.1016/j.jbc.2023.105441. Epub 2023 Nov 8.
7
Mitochondrial transport in neurons and evidence for its involvement in acute neurological disorders.
Front Neurosci. 2023 Oct 12;17:1268883. doi: 10.3389/fnins.2023.1268883. eCollection 2023.
8
Optogenetic cleavage of the Miro GTPase reveals the direct consequences of real-time loss of function in Drosophila.
PLoS Biol. 2023 Aug 17;21(8):e3002273. doi: 10.1371/journal.pbio.3002273. eCollection 2023 Aug.
9
COPI-regulated mitochondria-ER contact site formation maintains axonal integrity.
Cell Rep. 2023 Aug 29;42(8):112883. doi: 10.1016/j.celrep.2023.112883. Epub 2023 Jul 26.

本文引用的文献

1
Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses.
Neuron. 2009 Feb 26;61(4):541-55. doi: 10.1016/j.neuron.2009.01.030.
2
The mechanism of Ca2+ -dependent regulation of kinesin-mediated mitochondrial motility.
Cell. 2009 Jan 9;136(1):163-74. doi: 10.1016/j.cell.2008.11.046.
3
GTPase dependent recruitment of Grif-1 by Miro1 regulates mitochondrial trafficking in hippocampal neurons.
Mol Cell Neurosci. 2009 Mar;40(3):301-12. doi: 10.1016/j.mcn.2008.10.016. Epub 2008 Dec 3.
4
Bidirectional Ca2+-dependent control of mitochondrial dynamics by the Miro GTPase.
Proc Natl Acad Sci U S A. 2008 Dec 30;105(52):20728-33. doi: 10.1073/pnas.0808953105. Epub 2008 Dec 19.
5
Microtubules have opposite orientation in axons and dendrites of Drosophila neurons.
Mol Biol Cell. 2008 Oct;19(10):4122-9. doi: 10.1091/mbc.e07-10-1079. Epub 2008 Jul 30.
6
Effects of imaging conditions on mitochondrial transport and length in larval motor axons of Drosophila.
Comp Biochem Physiol A Mol Integr Physiol. 2008 Oct;151(2):159-72. doi: 10.1016/j.cbpa.2008.06.023. Epub 2008 Jun 27.
7
Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view.
Biochim Biophys Acta. 2008 Sep;1777(9):1092-7. doi: 10.1016/j.bbabio.2008.05.001. Epub 2008 May 14.
8
WAVE1 controls neuronal activity-induced mitochondrial distribution in dendritic spines.
Proc Natl Acad Sci U S A. 2008 Feb 26;105(8):3112-6. doi: 10.1073/pnas.0712180105. Epub 2008 Feb 14.
9
Multiple pathways influence mitochondrial inheritance in budding yeast.
Genetics. 2008 Feb;178(2):825-37. doi: 10.1534/genetics.107.083055. Epub 2008 Feb 1.
10
Fission and selective fusion govern mitochondrial segregation and elimination by autophagy.
EMBO J. 2008 Jan 23;27(2):433-46. doi: 10.1038/sj.emboj.7601963. Epub 2008 Jan 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验