Suppr超能文献

从高分辨率结构的定量分析推导RNA碱基配对中的新信息内容。

New information content in RNA base pairing deduced from quantitative analysis of high-resolution structures.

作者信息

Olson Wilma K, Esguerra Mauricio, Xin Yurong, Lu Xiang-Jun

机构信息

Department of Chemistry & Chemical Biology, BioMaPS Institute for Quantitative Biology, Rutgers, The State University of New Jersey, Wright-Rieman Laboratories, 610 Taylor Road, Piscataway, NJ 08854, USA.

出版信息

Methods. 2009 Mar;47(3):177-86. doi: 10.1016/j.ymeth.2008.12.003. Epub 2009 Jan 14.

Abstract

Non-canonical base pairs play important roles in organizing the complex three-dimensional folding of RNA. Here, we outline methodology developed both to analyze the spatial patterns of interacting base pairs in known RNA structures and to reconstruct models from the collective experimental information. We focus attention on the structural context and deformability of the seven pairing patterns found in greatest abundance in the helical segments in a set of well-resolved crystal structures, including (i-ii) the canonical A.U and G.C Watson-Crick base pairs, (iii) the G.U wobble pair, (iv) the sheared G.A pair, (v) the A.U Hoogsteen pair, (vi) the U.U wobble pair, and (vii) the G.A Watson-Crick-like pair. The non-canonical pairs stand out from the canonical associations in terms of apparent deformability, spanning a broader range of conformational states as measured by the six rigid-body parameters used to describe the spatial arrangements of the interacting bases, the root-mean-square deviations of the base-pair atoms, and the fluctuations in hydrogen-bonding geometry. The deformabilties, the modes of base-pair deformation, and the preferred sites of occurrence depend on sequence. We also characterize the positioning and overlap of the base pairs with respect to the base pairs that stack immediately above and below them in double-helical fragments. We incorporate the observed positions of the bases, base pairs, and intervening phosphorus atoms in models to predict the effects of the non-canonical interactions on overall helical structure.

摘要

非标准碱基对在RNA复杂的三维折叠结构组织中发挥着重要作用。在此,我们概述了已开发的方法,用于分析已知RNA结构中相互作用碱基对的空间模式,并根据收集到的实验信息重建模型。我们重点关注在一组解析良好的晶体结构的螺旋片段中最丰富的七种配对模式的结构背景和可变形性,包括(i - ii)标准的A·U和G·C沃森 - 克里克碱基对、(iii)G·U摆动对、(iv)剪切的G·A对、(v)A·U霍格施泰因对、(vi)U·U摆动对以及(vii)类G·A沃森 - 克里克对。从表观可变形性方面来看,非标准碱基对比标准碱基对更为突出,通过用于描述相互作用碱基空间排列的六个刚体参数、碱基对原子的均方根偏差以及氢键几何结构的波动来衡量,非标准碱基对跨越更广泛的构象状态范围。可变形性、碱基对变形模式以及优先出现位点均取决于序列。我们还描述了在双螺旋片段中,碱基对相对于紧邻其上方和下方堆叠的碱基对的定位和重叠情况。我们将碱基、碱基对以及中间磷原子在模型中的观测位置纳入其中,以预测非标准相互作用对整体螺旋结构的影响。

相似文献

1
New information content in RNA base pairing deduced from quantitative analysis of high-resolution structures.
Methods. 2009 Mar;47(3):177-86. doi: 10.1016/j.ymeth.2008.12.003. Epub 2009 Jan 14.
3
Effects of Noncanonical Base Pairing on RNA Folding: Structural Context and Spatial Arrangements of G·A Pairs.
Biochemistry. 2019 May 21;58(20):2474-2487. doi: 10.1021/acs.biochem.9b00122. Epub 2019 May 8.
4
Diversity of base-pair conformations and their occurrence in rRNA structure and RNA structural motifs.
J Mol Biol. 2004 Dec 10;344(5):1225-49. doi: 10.1016/j.jmb.2004.09.072.
5
A novel form of RNA double helix based on G·U and C·A wobble base pairing.
RNA. 2018 Feb;24(2):209-218. doi: 10.1261/rna.064048.117. Epub 2017 Nov 9.
6
An innate twist between Crick's wobble and Watson-Crick base pairs.
RNA. 2013 Aug;19(8):1038-53. doi: 10.1261/rna.036905.112.
7
RNABPDB: Molecular Modeling of RNA Structure-From Base Pair Analysis in Crystals to Structure Prediction.
Interdiscip Sci. 2022 Sep;14(3):759-774. doi: 10.1007/s12539-022-00528-w. Epub 2022 Jun 15.
8
Non-canonical base pairs and higher order structures in nucleic acids: crystal structure database analysis.
J Biomol Struct Dyn. 2006 Oct;24(2):149-61. doi: 10.1080/07391102.2006.10507108.
9
RNA structure and dynamics: a base pairing perspective.
Prog Biophys Mol Biol. 2013 Nov;113(2):264-83. doi: 10.1016/j.pbiomolbio.2013.07.003. Epub 2013 Jul 23.

引用本文的文献

1
RNABPDB: Molecular Modeling of RNA Structure-From Base Pair Analysis in Crystals to Structure Prediction.
Interdiscip Sci. 2022 Sep;14(3):759-774. doi: 10.1007/s12539-022-00528-w. Epub 2022 Jun 15.
3
Effects of Noncanonical Base Pairing on RNA Folding: Structural Context and Spatial Arrangements of G·A Pairs.
Biochemistry. 2019 May 21;58(20):2474-2487. doi: 10.1021/acs.biochem.9b00122. Epub 2019 May 8.
4
Intrinsic structural variability in GNRA-like tetraloops: insight from molecular dynamics simulation.
J Mol Model. 2017 Sep 30;23(10):300. doi: 10.1007/s00894-017-3470-1.
5
How Does Mg Modulate the RNA Folding Mechanism: A Case Study of the G:C W:W Trans Basepair.
Biophys J. 2017 Jul 25;113(2):277-289. doi: 10.1016/j.bpj.2017.04.029. Epub 2017 May 12.
7
DSSR: an integrated software tool for dissecting the spatial structure of RNA.
Nucleic Acids Res. 2015 Dec 2;43(21):e142. doi: 10.1093/nar/gkv716. Epub 2015 Jul 15.
8
Nucleic acid helix structure determination from NMR proton chemical shifts.
J Biomol NMR. 2013 Jun;56(2):95-112. doi: 10.1007/s10858-013-9725-y. Epub 2013 Apr 6.
9
Site-directed mutants of 16S rRNA reveal important RNA domains for KsgA function and 30S subunit assembly.
Biochemistry. 2011 Feb 8;50(5):854-63. doi: 10.1021/bi101005r. Epub 2011 Jan 11.

本文引用的文献

1
BPS: a database of RNA base-pair structures.
Nucleic Acids Res. 2009 Jan;37(Database issue):D83-8. doi: 10.1093/nar/gkn676. Epub 2008 Oct 9.
2
Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals.
Nature. 2008 Oct 30;455(7217):1193-7. doi: 10.1038/nature07415. Epub 2008 Oct 1.
5
The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data.
Nature. 2008 Mar 6;452(7183):51-5. doi: 10.1038/nature06684.
6
Automated de novo prediction of native-like RNA tertiary structures.
Proc Natl Acad Sci U S A. 2007 Sep 11;104(37):14664-9. doi: 10.1073/pnas.0703836104. Epub 2007 Aug 28.
7
Small RNAs: regulators and guardians of the genome.
J Cell Physiol. 2007 Nov;213(2):412-9. doi: 10.1002/jcp.21230.
8
A novel roll-and-slide mechanism of DNA folding in chromatin: implications for nucleosome positioning.
J Mol Biol. 2007 Aug 17;371(3):725-38. doi: 10.1016/j.jmb.2007.05.048. Epub 2007 May 24.
9
Prediction of microRNA targets.
Drug Discov Today. 2007 Jun;12(11-12):452-8. doi: 10.1016/j.drudis.2007.04.002. Epub 2007 Apr 26.
10
The electrostatic characteristics of G.U wobble base pairs.
Nucleic Acids Res. 2007;35(11):3836-47. doi: 10.1093/nar/gkm274. Epub 2007 May 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验