Suppr超能文献

涉及RNA糖磷酸骨架原子氢键的RNA结构基序。

RNA structural motifs that entail hydrogen bonds involving sugar-phosphate backbone atoms of RNA.

作者信息

Ulyanov Nikolai B, James Thomas L

机构信息

Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158-2517, USA.

出版信息

New J Chem. 2010 May 1;34(5):910-917. doi: 10.1039/b9nj00754g.

Abstract

The growing number of high-resolution crystal structures of large RNA molecules provides much information for understanding the principles of structural organization of these complex molecules. Several in-depth analyses of nucleobase-centered RNA structural motifs and backbone conformations have been published based on this information, including a systematic classification of base pairs by Leontis and Westhof. However, hydrogen bonds involving sugar-phosphate backbone atoms of RNA have not been analyzed systematically until recently, although such hydrogen bonds appear to be common both in local and tertiary interactions. Here we review some backbone structural motifs discussed in the literature and analyze a set of eight high-resolution multi-domain RNA structures. The analyzed RNAs are highly structured: among 5372 nucleotides in this set, 89% are involved in at least one "long-range" RNA-RNA hydrogen bond, i.e., hydrogen bonds between atoms in the same residue or sequential residues are ignored. These long-range hydrogen bonds frequently use backbone atoms as hydrogen bond acceptors, i.e., OP1, OP2, O2', O3', O4', or O5', or as a donor (2'OH). A surprisingly large number of such hydrogen bonds are found, considering that neither single-stranded nor double-stranded regions will contain such hydrogen bonds unless additional interactions with other residues exist. Among 8327 long-range hydrogen bonds found in this set of structures, 2811, or about one-third, are hydrogen bonds entailing RNA backbone atoms; they involve 39% of all nucleotides in the structures. The majority of them (2111) are hydrogen bonds entailing ribose hydroxyl groups, which can be used either as a donor or an acceptor; they constitute 25% of all hydrogen bonds and involve 31% of all nucleotides. The phosphate oxygens OP1 or OP2 are used as hydrogen bond acceptors in 12% of all nucleotides, and the ribose ring oxygen O4' and phosphodiester oxygens O3' and O5' are used in 4%, 4%, and 1% of all nucleotides, respectively. Distributions of geometric parameters and some examples of such hydrogen bonds are presented in this report. A novel motif involving backbone hydrogen bonds, the ribose-phosphate zipper, is also identified.

摘要

大型RNA分子高分辨率晶体结构数量的不断增加,为理解这些复杂分子的结构组织原理提供了大量信息。基于这些信息,已经发表了几篇关于以核碱基为中心的RNA结构基序和主链构象的深入分析文章,包括Leontis和Westhof对碱基对的系统分类。然而,直到最近,涉及RNA糖磷酸主链原子的氢键才得到系统分析,尽管这种氢键在局部和三级相互作用中似乎都很常见。在这里,我们回顾了文献中讨论的一些主链结构基序,并分析了一组八个高分辨率多结构域RNA结构。所分析的RNA具有高度结构化:在这组5372个核苷酸中,89%至少参与了一个“长程”RNA-RNA氢键,即同一残基或连续残基中的原子之间的氢键被忽略。这些长程氢键经常使用主链原子作为氢键受体,即OP1、OP2、O2'、O3'、O4'或O5',或作为供体(2'OH)。考虑到除非与其他残基存在额外相互作用,单链或双链区域都不会包含此类氢键,却发现了数量惊人的此类氢键。在这组结构中发现的8327个长程氢键中,2811个(约三分之一)是涉及RNA主链原子的氢键;它们涉及结构中所有核苷酸的39%。其中大多数(2111个)是涉及核糖羟基的氢键,其既可以用作供体也可以用作受体;它们占所有氢键的25%,涉及所有核苷酸的31%。磷酸氧OP1或OP2在所有核苷酸的12%中用作氢键受体,核糖环氧O4'以及磷酸二酯氧O3'和O5'分别在所有核苷酸的4%、4%和1%中被使用。本报告给出了几何参数的分布以及此类氢键的一些示例。还鉴定出了一种涉及主链氢键的新型基序——核糖-磷酸拉链。

相似文献

2
A molecular dynamics simulation of the flavin mononucleotide-RNA aptamer complex.
Biopolymers. 1999 Sep;50(3):287-302. doi: 10.1002/(SICI)1097-0282(199909)50:3<287::AID-BIP5>3.0.CO;2-G.
5
Statistical analysis of atomic contacts at RNA-protein interfaces.
J Mol Recognit. 2001 Jul-Aug;14(4):199-214. doi: 10.1002/jmr.534.
7
Deterministic features of side-chain main-chain hydrogen bonds in globular protein structures.
Protein Eng. 2000 Apr;13(4):227-38. doi: 10.1093/protein/13.4.227.
9
Rules governing the orientation of the 2'-hydroxyl group in RNA.
J Mol Biol. 1997 Nov 21;274(1):54-63. doi: 10.1006/jmbi.1997.1370.
10
Analysis of the less common hydrogen bonds involving ester oxygen sp3 atoms as acceptors in the crystal structures of small organic molecules.
Acta Crystallogr B. 2004 Aug;60(Pt 4):424-32. doi: 10.1107/S0108768104014442. Epub 2004 Jul 19.

引用本文的文献

2
RNA: The Unsuspected Conductor in the Orchestra of Macromolecular Crowding.
Chem Rev. 2024 Apr 24;124(8):4734-4777. doi: 10.1021/acs.chemrev.3c00575. Epub 2024 Apr 5.
3
Crystal structure of a cap-independent translation enhancer RNA.
Nucleic Acids Res. 2023 Sep 8;51(16):8891-8907. doi: 10.1093/nar/gkad649.
4
Carbon nanospikes have improved sensitivity and antifouling properties for adenosine, hydrogen peroxide, and histamine.
Anal Bioanal Chem. 2023 Oct;415(24):6039-6050. doi: 10.1007/s00216-023-04875-5. Epub 2023 Jul 28.
5
A comprehensive survey of long-range tertiary interactions and motifs in non-coding RNA structures.
Nucleic Acids Res. 2023 Sep 8;51(16):8367-8382. doi: 10.1093/nar/gkad605.
6
Occurrence and classification of T-shaped interactions between nucleobases in RNA structures.
RNA. 2023 Aug;29(8):1215-1229. doi: 10.1261/rna.079486.122. Epub 2023 May 15.
7
Cooperativity and Interdependency between RNA Structure and RNA-RNA Interactions.
Noncoding RNA. 2021 Dec 15;7(4):81. doi: 10.3390/ncrna7040081.
9
How to fold and protect mitochondrial ribosomal RNA with fewer guanines.
Nucleic Acids Res. 2018 Nov 16;46(20):10946-10968. doi: 10.1093/nar/gky762.
10
Stacking in RNA: NMR of Four Tetramers Benchmark Molecular Dynamics.
J Chem Theory Comput. 2015 Jun 9;11(6):2729-2742. doi: 10.1021/ct501025q. Epub 2015 Apr 16.

本文引用的文献

1
Tertiary motifs revealed in analyses of higher-order RNA junctions.
J Mol Biol. 2009 Oct 16;393(1):67-82. doi: 10.1016/j.jmb.2009.07.089. Epub 2009 Aug 3.
2
Classification and energetics of the base-phosphate interactions in RNA.
Nucleic Acids Res. 2009 Aug;37(15):4898-918. doi: 10.1093/nar/gkp468. Epub 2009 Jun 14.
3
Frequency and isostericity of RNA base pairs.
Nucleic Acids Res. 2009 Apr;37(7):2294-312. doi: 10.1093/nar/gkp011. Epub 2009 Feb 24.
4
New information content in RNA base pairing deduced from quantitative analysis of high-resolution structures.
Methods. 2009 Mar;47(3):177-86. doi: 10.1016/j.ymeth.2008.12.003. Epub 2009 Jan 14.
6
Annotation of tertiary interactions in RNA structures reveals variations and correlations.
RNA. 2008 Dec;14(12):2465-77. doi: 10.1261/rna.1249208. Epub 2008 Oct 28.
7
BPS: a database of RNA base-pair structures.
Nucleic Acids Res. 2009 Jan;37(Database issue):D83-8. doi: 10.1093/nar/gkn676. Epub 2008 Oct 9.
8
Structural insights into amino acid binding and gene control by a lysine riboswitch.
Nature. 2008 Oct 30;455(7217):1263-7. doi: 10.1038/nature07326. Epub 2008 Sep 10.
9
Structural principles from large RNAs.
Annu Rev Biophys. 2008;37:445-64. doi: 10.1146/annurev.biophys.36.040306.132755.
10
Structural basis of thiamine pyrophosphate analogues binding to the eukaryotic riboswitch.
J Am Chem Soc. 2008 Jul 2;130(26):8116-7. doi: 10.1021/ja801708e. Epub 2008 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验