Suppr超能文献

真菌中正常的多药耐药性需要脂质组成和药物转运活性的协调控制。

Coordinate control of lipid composition and drug transport activities is required for normal multidrug resistance in fungi.

作者信息

Shahi Puja, Moye-Rowley W Scott

机构信息

Department of Molecular Physiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.

出版信息

Biochim Biophys Acta. 2009 May;1794(5):852-9. doi: 10.1016/j.bbapap.2008.12.012. Epub 2008 Dec 25.

Abstract

Pathogenic fungi present a special problem in the clinic as the range of drugs that can be used to treat these types of infections is limited. This situation is further complicated by the presence of robust inducible gene networks encoding different proteins that confer tolerance to many available antifungal drugs. The transcriptional control of these multidrug resistance systems in several key fungi will be discussed. Experiments in the non-pathogenic Saccharomyces cerevisiae have provided much of our current understanding of the molecular framework on which fungal multidrug resistance is built. More recent studies on the important pathogenic Candida species, Candida albicans and Candida glabrata, have provided new insights into the organization of the multidrug resistance systems in these organisms. We will compare the circuitry of multidrug resistance networks in these three organisms and suggest that, in addition to the well-accepted drug efflux activities, the regulation of membrane composition by multidrug resistance proteins provides an important contribution to the resistant phenotypes observed.

摘要

致病性真菌在临床上是一个特殊问题,因为可用于治疗这类感染的药物种类有限。编码不同蛋白质的强大诱导基因网络的存在使情况更加复杂,这些蛋白质赋予了对许多现有抗真菌药物的耐受性。本文将讨论几种关键真菌中这些多药耐药系统的转录调控。在非致病性酿酒酵母中进行的实验为我们目前对真菌多药耐药性所基于的分子框架的理解提供了很多依据。最近对重要的致病性念珠菌属,白色念珠菌和光滑念珠菌的研究,为这些生物体中多药耐药系统的组织提供了新的见解。我们将比较这三种生物体中多药耐药网络的电路,并提出,除了广为人知的药物外排活性外,多药耐药蛋白对膜成分的调节对观察到的耐药表型也有重要贡献。

相似文献

1
Coordinate control of lipid composition and drug transport activities is required for normal multidrug resistance in fungi.
Biochim Biophys Acta. 2009 May;1794(5):852-9. doi: 10.1016/j.bbapap.2008.12.012. Epub 2008 Dec 25.
2
Curcumin potentiates the fungicidal effect of dodecanol by inhibiting drug efflux in wild-type budding yeast.
Lett Appl Microbiol. 2019 Jan;68(1):17-23. doi: 10.1111/lam.13083. Epub 2018 Nov 19.
4
Regulation of multidrug resistance in pathogenic fungi.
Fungal Genet Biol. 2010 Feb;47(2):94-106. doi: 10.1016/j.fgb.2009.08.002. Epub 2009 Aug 7.
5
Yeast ATP-binding cassette transporters conferring multidrug resistance.
Annu Rev Microbiol. 2012;66:39-63. doi: 10.1146/annurev-micro-092611-150111. Epub 2012 Jun 11.
7
Amino acid residues affecting drug pump function in Candida albicans--C. albicans drug pump function.
Nihon Ishinkin Gakkai Zasshi. 2006;47(4):275-81. doi: 10.3314/jjmm.47.275.
9
Drug resistance in yeasts--an emerging scenario.
Adv Microb Physiol. 2002;46:155-201. doi: 10.1016/s0065-2911(02)46004-3.
10

引用本文的文献

1
Transcriptomics Uncovers Key Genes for Photodynamic Killing on Trichosporon asahii Biofilms.
Mycopathologia. 2025 May 18;190(3):42. doi: 10.1007/s11046-025-00949-3.
2
Deletion of the Candida albicans TLO gene family results in alterations in membrane sterol composition and fluconazole tolerance.
PLoS One. 2024 Aug 9;19(8):e0308665. doi: 10.1371/journal.pone.0308665. eCollection 2024.
3
Acidic/Alkaline Stress Mediates Responses to Azole Drugs and Oxidative Stress in Aspergillus fumigatus.
Microbiol Spectr. 2022 Feb 23;10(1):e0199921. doi: 10.1128/spectrum.01999-21.
4
Disarming the Host: Detoxification of Plant Defense Compounds During Fungal Necrotrophy.
Front Plant Sci. 2021 Apr 30;12:651716. doi: 10.3389/fpls.2021.651716. eCollection 2021.
5
Antifungal Peptides as Therapeutic Agents.
Front Cell Infect Microbiol. 2020 Mar 17;10:105. doi: 10.3389/fcimb.2020.00105. eCollection 2020.
6
Changes in the Biophysical Properties of the Cell Membrane Are Involved in the Response of to Staurosporine.
Front Physiol. 2018 Oct 11;9:1375. doi: 10.3389/fphys.2018.01375. eCollection 2018.
7
Negative regulation of Candida glabrata Pdr1 by the deubiquitinase subunit Bre5 occurs in a ubiquitin independent manner.
Mol Microbiol. 2018 Oct;110(2):309-323. doi: 10.1111/mmi.14109. Epub 2018 Sep 30.
9
Candida glabrata Biofilms: How Far Have We Come?
J Fungi (Basel). 2017 Mar 1;3(1):11. doi: 10.3390/jof3010011.

本文引用的文献

2
Outwitting multidrug resistance to antifungals.
Science. 2008 Jul 18;321(5887):367-9. doi: 10.1126/science.1159746.
4
RTA2, a novel gene involved in azole resistance in Candida albicans.
Biochem Biophys Res Commun. 2008 Sep 5;373(4):631-6. doi: 10.1016/j.bbrc.2008.06.093. Epub 2008 Jul 2.
5
Genomewide location analysis of Candida albicans Upc2p, a regulator of sterol metabolism and azole drug resistance.
Eukaryot Cell. 2008 May;7(5):836-47. doi: 10.1128/EC.00070-08. Epub 2008 Apr 4.
6
A nuclear receptor-like pathway regulating multidrug resistance in fungi.
Nature. 2008 Apr 3;452(7187):604-9. doi: 10.1038/nature06836.
7
Compensatory activation of the multidrug transporters Pdr5p, Snq2p, and Yor1p by Pdr1p in Saccharomyces cerevisiae.
FEBS Lett. 2008 Mar 19;582(6):977-83. doi: 10.1016/j.febslet.2008.02.045. Epub 2008 Feb 26.
8
Antimicrobial resistance: resistance to antifungal agents: mechanisms and clinical impact.
Clin Infect Dis. 2008 Jan 1;46(1):120-8. doi: 10.1086/524071.
10
Recent advances and challenges in the treatment of invasive fungal infections.
Int J Antimicrob Agents. 2007 Dec;30(6):487-95. doi: 10.1016/j.ijantimicag.2007.07.019. Epub 2007 Oct 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验