Suppr超能文献

数字彩色眼底照片中糖尿病视网膜病变计算机辅助诊断的信息融合

Information fusion for diabetic retinopathy CAD in digital color fundus photographs.

作者信息

Niemeijer Meindert, Abramoff Michael D, van Ginneken Bram

机构信息

Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA 52242 USA.

出版信息

IEEE Trans Med Imaging. 2009 May;28(5):775-85. doi: 10.1109/TMI.2008.2012029. Epub 2009 Jan 13.

Abstract

The purpose of computer-aided detection or diagnosis (CAD) technology has so far been to serve as a second reader. If, however, all relevant lesions in an image can be detected by CAD algorithms, use of CAD for automatic reading or prescreening may become feasible. This work addresses the question how to fuse information from multiple CAD algorithms, operating on multiple images that comprise an exam, to determine a likelihood that the exam is normal and would not require further inspection by human operators. We focus on retinal image screening for diabetic retinopathy, a common complication of diabetes. Current CAD systems are not designed to automatically evaluate complete exams consisting of multiple images for which several detection algorithm output sets are available. Information fusion will potentially play a crucial role in enabling the application of CAD technology to the automatic screening problem. Several different fusion methods are proposed and their effect on the performance of a complete comprehensive automatic diabetic retinopathy screening system is evaluated. Experiments show that the choice of fusion method can have a large impact on system performance. The complete system was evaluated on a set of 15,000 exams (60,000 images). The best performing fusion method obtained an area under the receiver operator characteristic curve of 0.881. This indicates that automated prescreening could be applied in diabetic retinopathy screening programs.

摘要

计算机辅助检测或诊断(CAD)技术的目的至今一直是充当第二阅片者。然而,如果CAD算法能够检测出图像中的所有相关病变,那么将CAD用于自动阅片或预筛查可能变得可行。这项工作解决的问题是,如何融合来自多个CAD算法的信息,这些算法作用于构成一次检查的多幅图像,以确定该检查正常且无需人工操作员进一步检查的可能性。我们专注于糖尿病视网膜病变的视网膜图像筛查,糖尿病视网膜病变是糖尿病的一种常见并发症。当前的CAD系统并非设计用于自动评估由多幅图像组成的完整检查,对于这些图像有多个检测算法输出集。信息融合在使CAD技术应用于自动筛查问题方面可能会发挥关键作用。提出了几种不同的融合方法,并评估了它们对完整综合自动糖尿病视网膜病变筛查系统性能的影响。实验表明,融合方法的选择会对系统性能产生很大影响。该完整系统在一组15000次检查(60000幅图像)上进行了评估。性能最佳的融合方法在接收器操作特征曲线下的面积为0.881。这表明自动预筛查可应用于糖尿病视网膜病变筛查项目。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验