Suppr超能文献

医疗保健与医学中的决策融合:一篇叙述性综述

Decision fusion in healthcare and medicine: a narrative review.

作者信息

Nazari Elham, Biviji Rizwana, Roshandel Danial, Pour Reza, Shahriari Mohammad Hasan, Mehrabian Amin, Tabesh Hamed

机构信息

Department of Medical Informatics, Mashhad University of Medical Sciences, Mashhad, Iran.

Science of Healthcare Delivery, College of Health Solutions, Arizona State University, Phoenix, AZ, USA.

出版信息

Mhealth. 2022 Jan 20;8:8. doi: 10.21037/mhealth-21-15. eCollection 2022.

Abstract

OBJECTIVE

To provide an overview of the decision fusion (DF) technique and describe the applications of the technique in healthcare and medicine at prevention, diagnosis, treatment and administrative levels.

BACKGROUND

The rapid development of technology over the past 20 years has led to an explosion in data growth in various industries, like healthcare. Big data analysis within the healthcare systems is essential for arriving to a value-based decision over a period of time. Diversity and uncertainty in big data analytics have made it impossible to analyze data by using conventional data mining techniques and thus alternative solutions are required. DF is a form of data fusion techniques that could increase the accuracy of diagnosis and facilitate interpretation, summarization and sharing of information.

METHODS

We conducted a review of articles published between January 1980 and December 2020 from various databases such as Google Scholar, IEEE, PubMed, Science Direct, Scopus and web of science using the keywords decision fusion (DF), information fusion, healthcare, medicine and big data. A total of 141 articles were included in this narrative review.

CONCLUSIONS

Given the importance of big data analysis in reducing costs and improving the quality of healthcare; along with the potential role of DF in big data analysis, it is recommended to know the full potential of this technique including the advantages, challenges and applications of the technique before its use. Future studies should focus on describing the methodology and types of data used for its applications within the healthcare sector.

摘要

目的

概述决策融合(DF)技术,并描述该技术在医疗保健和医学领域预防、诊断、治疗及管理层面的应用。

背景

过去20年技术的快速发展导致各行业数据量呈爆炸式增长,医疗保健行业亦是如此。医疗系统内的大数据分析对于在一段时间内做出基于价值的决策至关重要。大数据分析中的多样性和不确定性使得无法使用传统数据挖掘技术来分析数据,因此需要其他解决方案。决策融合是一种数据融合技术,可提高诊断准确性,并有助于信息的解释、汇总和共享。

方法

我们使用关键词决策融合(DF)、信息融合、医疗保健、医学和大数据,对1980年1月至2020年12月期间在谷歌学术、电气和电子工程师协会(IEEE)、医学期刊数据库(PubMed)、科学Direct、Scopus和科学网等各种数据库上发表的文章进行了综述。本叙述性综述共纳入141篇文章。

结论

鉴于大数据分析在降低成本和提高医疗质量方面的重要性,以及决策融合在大数据分析中的潜在作用,建议在使用该技术之前了解其全部潜力,包括该技术的优势、挑战和应用。未来的研究应侧重于描述其在医疗保健领域应用所使用的数据方法和类型。

相似文献

1
Decision fusion in healthcare and medicine: a narrative review.
Mhealth. 2022 Jan 20;8:8. doi: 10.21037/mhealth-21-15. eCollection 2022.
2
Concurrence of big data analytics and healthcare: A systematic review.
Int J Med Inform. 2018 Jun;114:57-65. doi: 10.1016/j.ijmedinf.2018.03.013. Epub 2018 Mar 26.
4
Applications and Challenges in Healthcare Big Data: A Strategic Review.
Curr Med Imaging. 2022;19(1):27-36. doi: 10.2174/1573405618666220308113707.
5
A Systematic Review of Techniques and Sources of Big Data in the Healthcare Sector.
J Med Syst. 2017 Oct 14;41(11):183. doi: 10.1007/s10916-017-0832-2.
6
Decision-Making based on Big Data Analytics for People Management in Healthcare Organizations.
J Med Syst. 2019 Jul 22;43(9):290. doi: 10.1007/s10916-019-1419-x.
7
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
8
Big Data in Health: a Literature Review from the Year 2005.
J Med Syst. 2016 Sep;40(9):209. doi: 10.1007/s10916-016-0565-7. Epub 2016 Aug 13.
9
A Systematic Review on Healthcare Analytics: Application and Theoretical Perspective of Data Mining.
Healthcare (Basel). 2018 May 23;6(2):54. doi: 10.3390/healthcare6020054.
10
The path from big data analytics capabilities to value in hospitals: a scoping review.
BMC Health Serv Res. 2022 Jan 31;22(1):134. doi: 10.1186/s12913-021-07332-0.

引用本文的文献

1
Identification of Prognostic and Diagnostic Biomarkers for Glioma Utilizing Immune System Gene Profiling.
Med J Islam Repub Iran. 2025 Apr 1;39:49. doi: 10.47176/mjiri.39.49. eCollection 2025.
2
Identification of BCL11A, NTN5, and OGN as Diagnosis Biomarker of Papillary Renal Cell Carcinomas by Bioinformatic Analysis.
J Kidney Cancer VHL. 2025 Feb 28;12(1):12-22. doi: 10.15586/jkc.v12i1.366. eCollection 2025.
5
Identification of ZMYND19 as a novel biomarker of colorectal cancer: RNA-sequencing and machine learning analysis.
J Cell Commun Signal. 2023 Dec;17(4):1469-1485. doi: 10.1007/s12079-023-00779-2. Epub 2023 Jul 10.

本文引用的文献

1
Deep Learning for Acute Myeloid Leukemia Diagnosis.
J Med Life. 2020 Jul-Sep;13(3):382-387. doi: 10.25122/jml-2019-0090.
2
Coronavirus disease (COVID-19) detection in Chest X-Ray images using majority voting based classifier ensemble.
Expert Syst Appl. 2021 Mar 1;165:113909. doi: 10.1016/j.eswa.2020.113909. Epub 2020 Aug 26.
3
A Deep Learning System to Screen Novel Coronavirus Disease 2019 Pneumonia.
Engineering (Beijing). 2020 Oct;6(10):1122-1129. doi: 10.1016/j.eng.2020.04.010. Epub 2020 Jun 27.
4
Identifying COVID19 from Chest CT Images: A Deep Convolutional Neural Networks Based Approach.
J Healthc Eng. 2020 Aug 11;2020:8843664. doi: 10.1155/2020/8843664. eCollection 2020.
5
Improving an Intelligent Detection System for Coronary Heart Disease Using a Two-Tier Classifier Ensemble.
Biomed Res Int. 2020 Apr 27;2020:9816142. doi: 10.1155/2020/9816142. eCollection 2020.
6
Multi-information fusion neural networks for arrhythmia automatic detection.
Comput Methods Programs Biomed. 2020 Sep;193:105479. doi: 10.1016/j.cmpb.2020.105479. Epub 2020 Apr 29.
7
Social big data: Recent achievements and new challenges.
Inf Fusion. 2016 Mar;28:45-59. doi: 10.1016/j.inffus.2015.08.005. Epub 2015 Aug 28.
9
Ensemble forecast and parameter inference of childhood diarrhea in Chobe District, Botswana.
Epidemics. 2020 Mar;30:100372. doi: 10.1016/j.epidem.2019.100372. Epub 2019 Sep 16.
10
Why we need a small data paradigm.
BMC Med. 2019 Jul 17;17(1):133. doi: 10.1186/s12916-019-1366-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验