Suppr超能文献

基于随机森林分类器的视网膜异常检测方法。

A Random Forest classifier-based approach in the detection of abnormalities in the retina.

机构信息

Computer Science and Engineering Department, Maulana Abul Kalam Azad University of Technology, BF-142, Sector 1, Salt Lake City, Kolkata, West Bengal, 700064, India.

Regional Institute of Ophthalmology, Calcutta Medical College, Kolkata, West Bengal, India.

出版信息

Med Biol Eng Comput. 2019 Jan;57(1):193-203. doi: 10.1007/s11517-018-1878-0. Epub 2018 Aug 4.

Abstract

Classification of abnormalities from medical images using computer-based approaches is of growing interest in medical imaging. Timely detection of abnormalities due to diabetic retinopathy and age-related macular degeneration is required in order to prevent the prognosis of the disease. Computer-aided systems using machine learning are becoming interesting to ophthalmologists and researchers. We present here one such technique, the Random Forest classifier, to aid medical practitioners in accurate diagnosis of the diseases. A computer-aided diagnosis system is proposed for detecting retina abnormalities, which combines K means-based segmentation of the retina image, after due preprocessing, followed by machine learning techniques, using several low level and statistical features. Abnormalities in the retina that are classified are caused by age-related macular degeneration and diabetic retinopathy. Performance measures used in the analysis are accuracy, sensitivity, specificity, F-measure, and Mathew correlation coefficient. A comparison with another machine learning technique, the Naïve Bayes classifier shows that the classification achieved by Random Forest classifier is 93.58% and it outperforms Naïve Bayes classifier which yields an accuracy of 83.63%. Graphical abstract Random Forest classifier for abnormality detection in retina images.

摘要

使用基于计算机的方法对医学图像中的异常进行分类在医学成像中越来越受到关注。为了防止疾病恶化,需要及时检测出由糖尿病视网膜病变和年龄相关性黄斑变性引起的异常。使用机器学习的计算机辅助系统正引起眼科医生和研究人员的兴趣。我们在这里介绍一种这样的技术,即随机森林分类器,以帮助医学从业者准确诊断疾病。提出了一种用于检测视网膜异常的计算机辅助诊断系统,该系统结合了视网膜图像的 K 均值分割,在适当的预处理之后,使用几种低水平和统计特征,采用机器学习技术。分类的视网膜异常是由年龄相关性黄斑变性和糖尿病视网膜病变引起的。在分析中使用的性能度量包括准确性、敏感性、特异性、F 度量和马修相关系数。与另一种机器学习技术,朴素贝叶斯分类器的比较表明,随机森林分类器的分类准确率为 93.58%,优于准确率为 83.63%的朴素贝叶斯分类器。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验