Suppr超能文献

牙本质-釉质界的化学/分子结构取决于牙内位置。

Chemical/molecular structure of the dentin-enamel junction is dependent on the intratooth location.

作者信息

Xu Changqi, Yao Xiaomei, Walker Mary P, Wang Yong

机构信息

Department of Oral Biology, University of Missouri-Kansas City School of Dentistry, Kansas City, MO 64108, USA.

出版信息

Calcif Tissue Int. 2009 Mar;84(3):221-8. doi: 10.1007/s00223-008-9212-8. Epub 2009 Jan 18.

Abstract

The dentin-enamel junction (DEJ) plays an important role in preventing crack propagation from enamel into dentin. This function stems from its complex structure and materials properties that are different from either dentin or enamel. The molecular structural differences in both mineral and organic matrix across the DEJ zone were investigated by two-dimensional confocal Raman microspectroscopic mapping/imaging technique. The intensity ratios of 1450 (CH, matrix)/960 (P-O, mineral) decreased gradually to nearly zero across the DEJ. The width of this transition zone was dependent on the intratooth location, with 12.9 +/- 3.2 microm width at occlusal positions and 6.2 +/- 1.3 microm at cervical positions. The difference in width was significant (P < 0.001). Concurrently, spectral differences in both organic and inorganic matrices across the DEJ were also noted. For example, the ratios of 1243 (amide III)/1450 (CH) within the DEJ were lower than the values in dentin; however, the ratios of 1665 (amide I)/1450 (CH) within the DEJ were higher than those values in dentin. In addition, the ratios of 1070 (carbonate)/960 (phosphate) within the dentin were lower than the values in the DEJ. Raman images indicated that the distribution of the above ratios across the DEJ zone were also different at occlusal and cervical positions. The results suggest that the intratooth-location-dependent structure of the DEJ may be related to its function. Micro-Raman spectroscopic/imaging analysis of the DEJ provides a powerful means of identifying the functional width and molecular structural differences across the DEJ.

摘要

牙本质-釉质界(DEJ)在防止裂纹从釉质扩展至牙本质方面发挥着重要作用。这一功能源于其复杂的结构和与牙本质或釉质均不同的材料特性。通过二维共聚焦拉曼显微光谱测绘/成像技术研究了DEJ区域内矿物质和有机基质的分子结构差异。在整个DEJ区域,1450(CH,基质)/960(P-O,矿物质)的强度比逐渐降低至接近零。该过渡区的宽度取决于牙内位置,咬合位置处宽度为12.9±3.2微米,颈部位置处为6.2±1.3微米。宽度差异具有显著性(P<0.001)。同时,还注意到整个DEJ区域有机和无机基质的光谱差异。例如,DEJ内1243(酰胺III)/1450(CH)的比值低于牙本质中的值;然而,DEJ内1665(酰胺I)/1450(CH)的比值高于牙本质中的值。此外,牙本质内1070(碳酸盐)/960(磷酸盐)的比值低于DEJ中的值。拉曼图像表明,上述比值在DEJ区域的分布在咬合和颈部位置也有所不同。结果表明,DEJ的牙内位置依赖性结构可能与其功能有关。对DEJ的显微拉曼光谱/成像分析为识别DEJ的功能宽度和分子结构差异提供了一种强有力的手段。

相似文献

1
Chemical/molecular structure of the dentin-enamel junction is dependent on the intratooth location.
Calcif Tissue Int. 2009 Mar;84(3):221-8. doi: 10.1007/s00223-008-9212-8. Epub 2009 Jan 18.
2
Mapping the mechanical gradient of human dentin-enamel-junction at different intratooth locations.
Dent Mater. 2018 Mar;34(3):376-388. doi: 10.1016/j.dental.2017.11.001. Epub 2017 Nov 12.
3
Confocal Raman mapping of collagen cross-link and crystallinity of human dentin-enamel junction.
J Biomed Opt. 2017 Aug;22(8):1-8. doi: 10.1117/1.JBO.22.8.086003.
4
Optical spectroscopy and imaging of the dentin-enamel junction in human third molars.
J Biomed Mater Res A. 2003 Feb 1;64(2):372-7. doi: 10.1002/jbm.a.10436.
5
Fatigue crack propagation path across the dentinoenamel junction complex in human teeth.
J Biomed Mater Res A. 2003 Jul 1;66(1):103-9. doi: 10.1002/jbm.a.10541.
6
Micro-Raman spectroscopic investigation of dental calcified tissues.
J Biomed Mater Res A. 2004 May 1;69(2):286-93. doi: 10.1002/jbm.a.20130.
7
Type IV collagen is a novel DEJ biomarker that is reduced by radiotherapy.
J Dent Res. 2014 Oct;93(10):1028-34. doi: 10.1177/0022034514548221. Epub 2014 Aug 21.
8
Mechanical properties of the dentinoenamel junction: AFM studies of nanohardness, elastic modulus, and fracture.
J Biomed Mater Res. 2001 Jan;54(1):87-95. doi: 10.1002/1097-4636(200101)54:1<87::aid-jbm10>3.0.co;2-z.
9
Durability of adhesive bonds to tooth structure involving the DEJ.
J Mech Behav Biomed Mater. 2018 Jan;77:557-565. doi: 10.1016/j.jmbbm.2017.10.001. Epub 2017 Oct 2.

引用本文的文献

1
Multi-modal comparison of murine and human incisal dentin-enamel junctions.
Acta Biochim Pol. 2025 Aug 18;72:14642. doi: 10.3389/abp.2025.14642. eCollection 2025.
3
Bleaching at acidic and basic pH for enamel and dentin whitening using internal and external techniques.
Braz Oral Res. 2025 Jul 7;39:e073. doi: 10.1590/1807-3107bor-2025.vol39.073. eCollection 2025.
5
Analysis of Dental Enamel Remineralization: A Systematic Review of Technique Comparisons.
Bioengineering (Basel). 2023 Apr 12;10(4):472. doi: 10.3390/bioengineering10040472.
6
Novel Approach to Tooth Chemistry. Quantification of the Dental-Enamel Junction.
Int J Mol Sci. 2021 Jun 2;22(11):6003. doi: 10.3390/ijms22116003.
7
Chemical & Nano-mechanical Study of Artificial Human Enamel Subsurface Lesions.
Sci Rep. 2018 Mar 6;8(1):4047. doi: 10.1038/s41598-018-22459-7.
9
Calcium orthophosphates (CaPO): occurrence and properties.
Prog Biomater. 2016;5:9-70. doi: 10.1007/s40204-015-0045-z. Epub 2015 Nov 19.
10
Structural and Morphometric Comparison of Lower Incisors in PACAP-Deficient and Wild-Type Mice.
J Mol Neurosci. 2016 Jun;59(2):300-8. doi: 10.1007/s12031-016-0765-0. Epub 2016 May 6.

本文引用的文献

1
Raman spectroscopy in bioanalysis.
Talanta. 2000 Jan 24;51(1):131-44. doi: 10.1016/s0039-9140(99)00254-4.
2
Rapid dental development in a Middle Paleolithic Belgian Neanderthal.
Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20220-5. doi: 10.1073/pnas.0707051104. Epub 2007 Dec 12.
3
Apatite crystallites: effects of carbonate on morphology.
Science. 1967 Mar 17;155(3768):1409-11. doi: 10.1126/science.155.3768.1409.
4
5
Functional significance of the microstructural detail of the primate dentino-enamel junction: a possible example of exaptation.
J Hum Evol. 2007 Jan;52(1):103-11. doi: 10.1016/j.jhevol.2006.08.004. Epub 2006 Aug 18.
6
Bone osteonal tissues by Raman spectral mapping: orientation-composition.
J Struct Biol. 2006 Dec;156(3):489-96. doi: 10.1016/j.jsb.2006.06.011. Epub 2006 Jul 16.
7
FT NIR Raman studies on gamma-irradiated bone.
Spectrochim Acta A Mol Biomol Spectrosc. 2007 Mar;66(3):616-25. doi: 10.1016/j.saa.2006.04.003. Epub 2006 Apr 18.
8
Variation in modern human enamel formation times.
J Hum Evol. 2006 Mar;50(3):329-46. doi: 10.1016/j.jhevol.2005.09.003. Epub 2005 Nov 21.
9
Raman spectroscopy in chemical bioanalysis.
Curr Opin Chem Biol. 2004 Oct;8(5):534-9. doi: 10.1016/j.cbpa.2004.08.014.
10
Evaluation of a new modulus mapping technique to investigate microstructural features of human teeth.
J Biomech. 2004 Aug;37(8):1223-32. doi: 10.1016/j.jbiomech.2003.12.012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验