Bo Zheng, Yan Jianhua, Li Xiaodong, Chi Yong, Cen Kefa
State Key Laboratory of Cleaning Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China.
J Hazard Mater. 2009 Jul 30;166(2-3):1210-6. doi: 10.1016/j.jhazmat.2008.12.030. Epub 2008 Dec 9.
To apply gliding arc discharge (GAD) plasma processing to volatile organic compounds (VOCs) emission control, the formation of NO(2) as an undesired byproduct needs to be addressed. Comparative results of effluent temperature and product concentrations between experiment and thermodynamic equilibrium calculation show that the NO(2) formation in dry air GAD is totally out of thermodynamic equilibrium. Meanwhile, obvious NO (A(2)Sigma+)) and N(2)(+) (B(2)Sigma(u)(+)) are detected as the major reactive species in the dry air GAD plasma region. These results suggest that the thermal (or Zeldovich) NO(x) formation mechanism is not significant in GAD system, while the energy level and the density of electrons in the plasma region will severely influence the NO(2) formation. The presence of 500 ppm VOCs in the feed gases shows a limiting influence on the NO(2) formation, which is in the order of aromatic hydrocarbon (C(6)H(6) and C(7)H(8))>straight-chain hydrocarbon (C(4)H(10) and C(6)H(14))>halogenated hydrocarbon (CCl(4)). The influences of VOCs chemical structure, supply voltage, feed gas humidity, and reactor geometry on NO(2) formation are investigated, and the results correspond to above mechanism analysis. Based on the above, the possible pathways of the inhibition of NO(2) formation in GAD-assisted VOCs decomposition process are discussed.
为了将滑动弧放电(GAD)等离子体处理应用于挥发性有机化合物(VOCs)排放控制,需要解决作为不期望的副产物的NO(2)的形成问题。实验与热力学平衡计算之间的流出物温度和产物浓度的对比结果表明,干燥空气中GAD过程中NO(2)的形成完全偏离热力学平衡。同时,在干燥空气中GAD等离子体区域检测到明显的NO(A(2)Σ+)和N(2)(+)(B(2)Σ(u)(+))作为主要反应物种。这些结果表明,热(或泽尔多维奇)NO(x)形成机制在GAD系统中并不显著,而等离子体区域中电子的能级和密度将严重影响NO(2)的形成。进料气体中500 ppm VOCs的存在对NO(2)的形成有一定限制影响,其顺序为芳烃(C(6)H(6)和C(7)H(8))>直链烃(C(4)H(10)和C(6)H(14))>卤代烃(CCl(4))。研究了VOCs化学结构、供应电压、进料气体湿度和反应器几何形状对NO(2)形成的影响,结果与上述机理分析一致。基于上述内容,讨论了在GAD辅助的VOCs分解过程中抑制NO(2)形成的可能途径。