Suppr超能文献

基于傅里叶变换近红外光谱法和监督模式识别技术的不同产地炒青绿茶(茶树)鉴别研究

Study on discrimination of Roast green tea (Camellia sinensis L.) according to geographical origin by FT-NIR spectroscopy and supervised pattern recognition.

作者信息

Chen Quansheng, Zhao Jiewen, Lin Hao

机构信息

Jiangsu University, Zhenjiang, PR China.

出版信息

Spectrochim Acta A Mol Biomol Spectrosc. 2009 May;72(4):845-50. doi: 10.1016/j.saa.2008.12.002. Epub 2008 Dec 13.

Abstract

Rapid discrimination of roast green tea according to geographical origin is crucial to quality control. Fourier transform near-infrared (FT-NIR) spectroscopy and supervised pattern recognition was attempted to discriminate Chinese green tea according to geographical origins (i.e. Anhui Province, Henan Province, Jiangsu Province, and Zhejiang Province) in this work. Four supervised pattern recognitions methods were used to construct the discrimination models based on principal component analysis (PCA), respectively. The number of principal components factors (PCs) and model parameters were optimized by cross-validation in the constructing model. The performances of four discrimination models were compared. Experimental results showed that the performance of SVM model is the best among four models. The optimal SVM model was achieved when 4 PCs were used, discrimination rates being all 100% in the training and prediction set. The overall results demonstrated that FT-NIR spectroscopy with supervised pattern recognition could be successfully applied to discriminate green tea according to geographical origins.

摘要

根据地理来源快速鉴别烘青绿茶对质量控制至关重要。本研究尝试利用傅里叶变换近红外(FT-NIR)光谱和监督模式识别技术,根据地理来源(即安徽省、河南省、江苏省和浙江省)鉴别中国绿茶。分别采用四种监督模式识别方法,基于主成分分析(PCA)构建鉴别模型。在构建模型过程中,通过交叉验证对主成分因子(PCs)数量和模型参数进行优化。比较了四种鉴别模型的性能。实验结果表明,支持向量机(SVM)模型在四种模型中性能最佳。当使用4个主成分时可获得最优的支持向量机模型,训练集和预测集的鉴别率均为100%。总体结果表明,结合监督模式识别的傅里叶变换近红外光谱技术可成功应用于根据地理来源鉴别绿茶。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验