Suppr超能文献

基于极端学习机的近红外光谱快速检测茴香产地。

Rapidly detecting fennel origin of the near-infrared spectroscopy based on extreme learning machine.

机构信息

College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China.

Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Research Institute, Urumqi, 830011, China.

出版信息

Sci Rep. 2022 Aug 10;12(1):13593. doi: 10.1038/s41598-022-17810-y.

Abstract

Fennel contains many antioxidant and antibacterial substances, and it has very important applications in food flavoring and other fields. The kinds and contents of chemical substances in fennel vary from region to region, which can affect the taste and efficacy of the fennel and its derivatives. Therefore, it is of great significance to accurately classify the origin of the fennel. Recently, origin detection methods based on deep networks have shown promising results. However, the existing methods spend a relatively large time cost, a drawback that is fatal for large amounts of data in practical application scenarios. To overcome this limitation, we explore an origin detection method that guarantees faster detection with classification accuracy. This research is the first to use the machine learning algorithm combined with the Fourier transform-near infrared (FT-NIR) spectroscopy to realize the classification and identification of the origin of the fennel. In this experiment, we used Rubberband baseline correction on the FT-NIR spectral data of fennel (Yumen, Gansu and Turpan, Xinjiang), using principal component analysis (PCA) for data dimensionality reduction, and selecting extreme learning machine (ELM), Convolutional Neural Network (CNN), recurrent neural network (RNN), Transformer, generative adversarial networks (GAN) and back propagation neural network (BPNN) classification model of the company realizes the classification of the sample origin. The experimental results show that the classification accuracy of ELM, RNN, Transformer, GAN and BPNN models are above 96%, and the ELM model using the hardlim as the activation function has the best classification effect, with an average accuracy of 100% and a fast classification speed. The average time of 30 experiments is 0.05 s. This research shows the potential of the machine learning algorithm combined with the FT-NIR spectra in the field of food production area classification, and provides an effective means for realizing rapid detection of the food production area, so as to merchants from selling shoddy products as good ones and seeking illegal profits.

摘要

小茴香含有许多抗氧化和抗菌物质,在食品调味等领域具有非常重要的应用。小茴香的化学物质种类和含量因地区而异,这会影响小茴香及其衍生物的口感和功效。因此,准确分类小茴香的产地具有重要意义。最近,基于深度网络的产地检测方法显示出了良好的效果。然而,现有的方法需要花费相对较大的时间成本,这在实际应用场景中处理大量数据时是一个致命的缺点。为了克服这一限制,我们探索了一种既能保证更快检测速度又能保证分类准确性的产地检测方法。这项研究首次将机器学习算法与傅里叶变换近红外(FT-NIR)光谱相结合,实现了小茴香产地的分类和识别。在本实验中,我们对小茴香(甘肃玉门和新疆吐鲁番)的 FT-NIR 光谱数据进行了橡胶带基线校正,采用主成分分析(PCA)进行数据降维,并选择极限学习机(ELM)、卷积神经网络(CNN)、递归神经网络(RNN)、Transformer、生成对抗网络(GAN)和反向传播神经网络(BPNN)分类模型对公司的样本产地进行分类。实验结果表明,ELM、RNN、Transformer、GAN 和 BPNN 模型的分类准确率均在 96%以上,其中使用硬限幅作为激活函数的 ELM 模型分类效果最好,平均准确率为 100%,分类速度较快。30 次实验的平均时间为 0.05 秒。该研究展示了机器学习算法与 FT-NIR 光谱在食品产地分类领域的应用潜力,为实现食品产地的快速检测提供了有效手段,从而防止商家以次充好、谋取非法利益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74eb/9365781/8a4ccb31f4da/41598_2022_17810_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验