Suppr超能文献

使用近红外光谱法对茶叶品种进行分类时间接和直接特征提取算法的比较研究

Comparative study of indirect and direct feature extraction algorithms in classifying tea varieties using near-infrared spectroscopy.

作者信息

Zhou Xuefan, Wu Xiaohong, Wu Bin

机构信息

School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, China.

High-tech Key Laboratory of Agricultural Equipment and Intelligence of Jiangsu Province, Jiangsu University, Zhenjiang, China.

出版信息

Curr Res Food Sci. 2025 Apr 30;10:101065. doi: 10.1016/j.crfs.2025.101065. eCollection 2025.

Abstract

Tea, a globally cherished beverage, has become an integral part of daily life, particularly in China. Given the extensive variety of teas, each distinguished by unique price points, flavors, and health benefits, effective classification within the tea industry is crucial to address the diverse preferences of consumers. This study utilized indirect and direct feature extraction algorithms to analyze the Near-Infrared (NIR) spectra of various tea varieties and compared their classification outcomes. Principal Component Analysis (PCA) was employed as a dimensionality reduction technique for indirect feature extraction algorithms. The study began with the collection of NIR spectra from different tea varieties, followed by the application of three spectral preprocessing algorithms. Indirect and direct feature extraction algorithms were then used to reduce the dimensionality of the preprocessed data. A K-Nearest Neighbors (KNN) classifier analyzed the dimensionality-reduced data to determine classification accuracy. The findings revealed that the classification accuracies of indirect feature extraction algorithms consistently exceeded those of direct feature extraction algorithms, with the former generally surpassing 90.0 %, while the latter remained lower. This indicates that indirect feature extraction algorithms are more adept at handling complex spectral data. A significant decline in classification accuracy was observed when data were processed with Savitzky-Golay (SG). An in-depth analysis led to the development of an optimization plan incorporating the Successive Projections Algorithm (SPA), which effectively enhanced all classification accuracies to above 90 %.

摘要

茶,一种全球备受喜爱的饮品,已成为日常生活中不可或缺的一部分,在中国尤其如此。鉴于茶叶种类繁多,每种茶叶都有独特的价格、风味和健康益处,茶叶行业内的有效分类对于满足消费者的多样化偏好至关重要。本研究利用间接和直接特征提取算法分析了各种茶叶品种的近红外(NIR)光谱,并比较了它们的分类结果。主成分分析(PCA)被用作间接特征提取算法的降维技术。该研究首先收集了不同茶叶品种的近红外光谱,随后应用了三种光谱预处理算法。然后使用间接和直接特征提取算法对预处理后的数据进行降维。使用K近邻(KNN)分类器分析降维后的数据以确定分类准确率。研究结果表明,间接特征提取算法的分类准确率始终超过直接特征提取算法,前者通常超过90.0%,而后者则较低。这表明间接特征提取算法更擅长处理复杂的光谱数据。当使用Savitzky-Golay(SG)处理数据时,观察到分类准确率显著下降。深入分析导致制定了一项包含连续投影算法(SPA)的优化计划,该计划有效地将所有分类准确率提高到了90%以上。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c6c/12099700/bc8cbf05ca81/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验