Yamamoto Eriko, Watanabe Yumiko, Makino Yasushi, Omichi Kaoru
Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, Japan.
J Biochem. 2009 May;145(5):585-90. doi: 10.1093/jb/mvp012. Epub 2009 Jan 20.
Recently, we found that alpha-, beta- and gamma-cyclodextrins accelerated the 4-alpha-glucanotransferase action of porcine liver glycogen debranching enzyme (GDE) on Glcalpha1-4Glcalpha1-4Glcalpha1-4(Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-6)Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-4GlcPA (B5/84), and proposed the presence of an activator binding site in the GDE molecule. In liver cells, the structures of alpha-glucans proximal to the site GDE acts are not cyclodextrins, but glycogen and its degradation products. To estimate the structural characteristics of intrinsic activators and to inspect the features of the activator binding site, we examined the effects of four fluorogenic dextrins, (Glcalpha1-6)(m)Glcalpha1-4(Glcalpha1-4)(n)GlcPA (B5/51, m = 1, n = 3; B6/61, m = 1, n = 4; B7/71, m = 1, n = 5; G6PA, m = 0, n = 4), on the debranching of B5/84 by porcine liver GDE. The GDE 4-alpha-glucanotransferase removed the maltotriosyl residue from the maltotetraosyl branch of B5/84, producing Glcalpha1-4Glcalpha1-4Glcalpha1-4(Glcalpha1-6)Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-4GlcPA (B5/81). In the presence of G6PA, the removed maltotriosyl residue was transferred to G6PA to give Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-4GlcPA (G9PA). In the absence of G6PA, the removed maltotriosyl residue was transferred to water. B7/71, B6/61 and B5/51 did not undergo any changes by the GDE, but they accelerated the action of the 4-alpha-glucanotransferase in removing the maltotriosyl residue. Of the four fluorogenic dextrins examined, B6/61 most strongly accelerated the 4-alpha-glucanotransferase action. The activator binding site is likely to be a space that accommodates the structure of Glcalpha1-6Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-4Glc.
最近,我们发现α-、β-和γ-环糊精可加速猪肝糖原脱支酶(GDE)对Glcα1-4Glcα1-4Glcα1-4(Glcα1-4Glcα1-4Glcα1-4Glcα1-6)Glcα1-4Glcα1-4Glcα1-4Glcα1-4GlcPA(B5/84)的4-α-葡聚糖转移酶活性,并提出GDE分子中存在一个激活剂结合位点。在肝细胞中,GDE作用位点附近的α-葡聚糖结构并非环糊精,而是糖原及其降解产物。为评估内源性激活剂的结构特征并检查激活剂结合位点的特性,我们研究了四种荧光右旋糖酐,(Glcα1-6)(m)Glcα1-4(Glcα1-4)(n)GlcPA(B5/51,m = 1,n = 3;B6/61,m = 1,n = 4;B7/71,m = 1,n = 5;G6PA,m = 0,n = 4)对猪肝GDE催化B5/84脱支反应的影响。GDE的4-α-葡聚糖转移酶从B5/84的麦芽四糖支链上移除麦芽三糖残基,生成Glcα1-4Glcα1-4Glcα1-4(Glcα1-6)Glcα1-4Glcα1-4Glcα1-4Glcα1-4GlcPA(B5/81)。在G6PA存在的情况下,移除的麦芽三糖残基转移至G6PA,生成Glcα1-4Glcα1-4Glcα1-4Glcα1-4Glcα1-4Glcα1-4Glcα1-4Glcα1-4GlcPA(G9PA)。在没有G6PA的情况下,移除的麦芽三糖残基转移至水中。B7/71、B6/61和B5/51在GDE作用下未发生任何变化,但它们加速了4-α-葡聚糖转移酶移除麦芽三糖残基的作用。在所研究的四种荧光右旋糖酐中,B6/61对4-α-葡聚糖转移酶活性的加速作用最强。激活剂结合位点可能是一个能够容纳Glcα1-6Glcα1-4Glcα1-4Glcα1-4Glcα1-4Glc结构的空间。