Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Naka-ku, Sakai, Osaka, 599-8531, Japan.
Glycoconj J. 2022 Jun;39(3):345-355. doi: 10.1007/s10719-022-10046-y. Epub 2022 Feb 22.
Glycogen debranching enzyme (GDE) is bifunctional in that it exhibits both 4-α-glucanotransferase and amylo-α-1,6-glucosidase activity at two distinct catalytic sites. GDE converts the phosphorylase-limit biantennary branch [G-G-G-G-(G-G-G-G↔)G-G- residue, where G = D-glucose, hyphens represent α-1,4-glycosidic bonds, and the double-headed arrow represents an α-1,6-glycosidic bond] into a linear maltooligosyl residue, which is then subjected to phosphorylase, and glycogen degradation continues. The prevailing hypothesis regarding the glycogen debranching pathway was that 4-α-glucanotransferase converts the phosphorylase-limit biantennary branch into the G-G-G-G-G-G-G-(G↔)G-G- residue and amylo-α-1,6-glucosidase cleaves the remaining α-1,6-linked G residue. In the present study, we analyzed the substrate specificities of 4-α-glucanotransferase and amylo-α-1,6-glucosidase using fluorogenic biantennary dextrins such as G-G-G-G-(G-G-G-G↔)G-G-GPA (F4/4/2; where GPA = 1-deoxy-1-[(2-pyridyl)amino]-D-glucitol), G-(G-G-G-G↔)G-G-GPA (F1/4/2), and G-G-G-G-G-G-G-(G↔)G-G-GPA (F7/1/2). Contrary to the prevailing hypothesis, the main branch of F4/4/2 was an important donor substrate component of 4-α-glucanotransferase and did not serve as an acceptor substrate. However, when G-G-G-G-G-GPA was added to the mixture, it successfully accepted a maltotriosyl (G-) residue from F4/4/2. In addition, amylo-α-1,6-glucosidase exhibited strong activity towards G-G-G-G-(G↔)G-G-GPA but weak activity towards F7/1/2. Furthermore, the debranching activity of GDE towards phosphorylase-limit glycogen substantially increased when methyl α-maltooligosides with lengths equal to or greater than that of methyl α-maltopentaoside (G-OCH) were added to the enzyme reaction mixture. Based on these results, we propose the following macroscopic debranching pathway: Via 4-α-glucanotransferase, the G- residue of the donor branch is transferred to a long (n ≥ 5) linear G- residue linked to a different branching G residue.
糖原分支酶 (GDE) 具有双重功能,它在两个不同的催化位点上表现出 4-α-葡聚糖转移酶和淀粉-α-1,6-葡糖苷酶活性。GDE 将磷酸化酶限制的双触角分支 [G-G-G-G-(G-G-G-G↔)G-G-残基,其中 G = D-葡萄糖,破折号表示α-1,4-糖苷键,双箭头表示α-1,6-糖苷键] 转化为线性麦芽寡糖残基,然后受磷酸化酶作用,糖原降解继续进行。关于糖原分支酶途径的流行假设是 4-α-葡聚糖转移酶将磷酸化酶限制的双触角分支转化为 G-G-G-G-G-G-G-(G↔)G-G-残基,而淀粉-α-1,6-葡糖苷酶切割剩余的α-1,6 连接的 G 残基。在本研究中,我们使用荧光双触角糊精(如 G-G-G-G-(G-G-G-G↔)G-G-GPA(F4/4/2;其中 GPA = 1-脱氧-1-[(2-吡啶基)氨基]-D-葡萄糖醇)、G-(G-G-G-G↔)G-G-GPA(F1/4/2)和 G-G-G-G-G-G-G-(G↔)G-G-GPA(F7/1/2)分析了 4-α-葡聚糖转移酶和淀粉-α-1,6-葡糖苷酶的底物特异性。与流行的假设相反,F4/4/2 的主链是 4-α-葡聚糖转移酶的重要供体底物成分,不作为受体底物。然而,当将 G-G-G-G-G-GPA 添加到混合物中时,它成功地从 F4/4/2 中接受了麦芽三糖(G-)残基。此外,淀粉-α-1,6-葡糖苷酶对 G-G-G-G-(G↔)G-G-GPA 表现出强烈的活性,而对 F7/1/2 表现出较弱的活性。此外,当向酶反应混合物中添加长度等于或大于甲基α-麦芽五糖苷(G-OCH)的甲基α-麦芽寡糖时,GDE 对磷酸化酶限制糖原的分支酶活性大大增加。基于这些结果,我们提出了以下宏观分支酶途径:通过 4-α-葡聚糖转移酶,供体分支的 G 残基转移到与不同分支 G 残基相连的长(n≥5)线性 G-残基上。