Jelesarov Ilian, Karshikoff Andrey
Biochemisches Institut der Universität Zürich, Zürich, Switzerland.
Methods Mol Biol. 2009;490:227-60. doi: 10.1007/978-1-59745-367-7_10.
Although the energetic balance of forces stabilizing proteins has been established qualitatively over the last decades, quantification of the energetic contribution of particular interactions still poses serious problems. The reasons are the strong cooperativity and the interdependence ofnoncovalent interactions. Salt bridges are a typical example. One expects that ionizable side chains frequently form ion pairs in innumerable crystal structures. Since electrostatic attraction between opposite charges is strong per se, salt bridges can intuitively be regarded as an important factor stabilizing the native structure. Is that really so? In this chapter we critically reassess the available methods to delineate the role ofelectrostatic interactions and salt bridges to protein stability, and discuss the progress and the obstacles in this endeavor. The basic problem is that formation of salt bridges depends on the ionization properties of the participating groups, which is significantly influenced by the protein environment. Furthermore, salt bridges experience thermal fluctuations, continuously break and re-form, and their lifespan in solution is governed by the flexibility of the protein. Finally, electrostatic interactions are long-range and might be significant in the unfolded state, thus seriously influencing the energetic profile. Elimination of salt bridges by protonation/deprotonation at extreme pH or by mutation provides only rough energetic estimates, since there is no way to account for the nonadditive response of the protein moiety. From what we know so far, the strength of electrostatic interactions is strongly context-dependent, yet it is unlikely that salt bridges are dominant factors governing protein stability. Nevertheless, proteins from thermophiles and hyperthermophiles exhibit more, and frequently networked, salt bridges than proteins from the mesophilic counterparts. Increasing the thermal (not the thermodynamic) stability of proteins by optimization of charge-charge interactions is a good example for an evolutionary solution utilizing physical factors.
尽管在过去几十年中已经定性地确定了稳定蛋白质的各种作用力的能量平衡,但对特定相互作用的能量贡献进行量化仍然存在严重问题。原因在于非共价相互作用具有很强的协同性和相互依赖性。盐桥就是一个典型例子。人们预期可电离的侧链在无数晶体结构中会频繁形成离子对。由于相反电荷之间的静电吸引力本身很强,盐桥直观上可被视为稳定天然结构的一个重要因素。真的是这样吗?在本章中,我们批判性地重新评估了用于描述静电相互作用和盐桥对蛋白质稳定性作用的现有方法,并讨论了这一努力中的进展和障碍。基本问题在于盐桥的形成取决于参与基团的电离性质,而这又受到蛋白质环境的显著影响。此外,盐桥会经历热涨落,不断断裂和重新形成,其在溶液中的寿命取决于蛋白质的柔韧性。最后,静电相互作用是长程的,在未折叠状态下可能很显著,从而严重影响能量分布。在极端pH值下通过质子化/去质子化或通过突变消除盐桥只能提供大致的能量估计,因为无法考虑蛋白质部分的非加性响应。就我们目前所知,静电相互作用的强度强烈依赖于环境,但盐桥不太可能是决定蛋白质稳定性的主导因素。然而,嗜热菌和超嗜热菌中的蛋白质比中温菌中的蛋白质表现出更多且常常相互连接的盐桥。通过优化电荷 - 电荷相互作用来提高蛋白质的热(而非热力学)稳定性是利用物理因素的一种进化解决方案的很好例子。