Bertran-Gonzalez Jesus, Håkansson Kerstin, Borgkvist Anders, Irinopoulou Theano, Brami-Cherrier Karen, Usiello Alessandro, Greengard Paul, Hervé Denis, Girault Jean-Antoine, Valjent Emmanuel, Fisone Gilberto
Inserm, UMR-S 839, Paris, France.
Neuropsychopharmacology. 2009 Jun;34(7):1710-20. doi: 10.1038/npp.2008.228. Epub 2009 Jan 21.
The antipsychotic agent haloperidol regulates gene transcription in striatal medium spiny neurons (MSNs) by blocking dopamine D2 receptors (D2Rs). We examined the mechanisms by which haloperidol increases the phosphorylation of histone H3, a key step in the nucleosomal response. Using bacterial artificial chromosome (BAC)-transgenic mice that express EGFP under the control of the promoter of the dopamine D1 receptor (D1R) or the D2R, we found that haloperidol induced a rapid and sustained increase in the phosphorylation of histone H3 in the striatopallidal MSNs of the dorsal striatum, with no change in its acetylation. This effect was mimicked by raclopride, a selective D2R antagonist, and prevented by the blockade of adenosine A2A receptors (A2ARs), or genetic attenuation of the A2AR-associated G protein, Galpha(olf). Mutation of the cAMP-dependent phosphorylation site (Thr34) of the 32-kDa dopamine and cAMP-regulated phosphoprotein (DARPP-32) decreased the haloperidol-induced H3 phosphorylation, supporting the role of cAMP in H3 phosphorylation. Haloperidol also induced extracellular signal-regulated kinase (ERK) phosphorylation in striatopallidal MSNs, but this effect was not implicated in H3 phosphorylation. The levels of mitogen- and stress-activated kinase 1 (MSK1), which has been reported to mediate ERK-induced H3 phosphorylation, were lower in striatopallidal than in striatonigral MSNs. Moreover, haloperidol-induced H3 phosphorylation was unaltered in MSK1-knockout mice. These data indicate that, in striatopallidal MSNs, H3 phosphorylation is controlled by the opposing actions of D2Rs and A2ARs. Thus, blockade of D2Rs promotes histone H3 phosphorylation through the A2AR-mediated activation of Galpha(olf) and inhibition of protein phosphatase-1 (PP-1) through the PKA-dependent phosphorylation of DARPP-32.
抗精神病药物氟哌啶醇通过阻断多巴胺D2受体(D2R)来调节纹状体中等棘状神经元(MSN)中的基因转录。我们研究了氟哌啶醇增加组蛋白H3磷酸化的机制,这是核小体反应中的关键步骤。利用在多巴胺D1受体(D1R)或D2R启动子控制下表达EGFP的细菌人工染色体(BAC)转基因小鼠,我们发现氟哌啶醇诱导背侧纹状体的纹状体苍白球MSN中组蛋白H3磷酸化迅速且持续增加,其乙酰化无变化。选择性D2R拮抗剂雷氯必利模拟了这种效应,而腺苷A2A受体(A2AR)的阻断或A2AR相关G蛋白Gα(olf)的基因减弱则可防止这种效应。32 kDa多巴胺和cAMP调节磷蛋白(DARPP - 32)的cAMP依赖性磷酸化位点(Thr34)突变降低了氟哌啶醇诱导的H3磷酸化,支持了cAMP在H3磷酸化中的作用。氟哌啶醇还诱导纹状体苍白球MSN中的细胞外信号调节激酶(ERK)磷酸化,但这种效应与H3磷酸化无关。据报道介导ERK诱导的H3磷酸化的丝裂原和应激激活激酶1(MSK1)水平在纹状体苍白球中低于纹状体黑质MSN。此外,在MSK1基因敲除小鼠中,氟哌啶醇诱导的H3磷酸化未改变。这些数据表明,在纹状体苍白球MSN中,H3磷酸化受D2R和A2AR的相反作用控制。因此,D2R的阻断通过A2AR介导的Gα(olf)激活和通过DARPP - 32的PKA依赖性磷酸化抑制蛋白磷酸酶 - 1(PP - 1)来促进组蛋白H3磷酸化。