CNRS, UMR8256 "Biological Adaptation and Ageing", Institut de Biologie Paris-Seine (IBPS), F-75005, Paris, France.
Université Pierre et Marie Curie (UPMC, Paris 6), Sorbonne Universités, F-75005, Paris, France.
J Physiol. 2017 Dec 15;595(24):7451-7475. doi: 10.1113/JP274475. Epub 2017 Sep 2.
Brief dopamine events are critical actors of reward-mediated learning in the striatum; the intracellular cAMP-protein kinase A (PKA) response of striatal medium spiny neurons to such events was studied dynamically using a combination of biosensor imaging in mouse brain slices and in silico simulations. Both D1 and D2 medium spiny neurons can sense brief dopamine transients in the sub-micromolar range. While dopamine transients profoundly change cAMP levels in both types of medium spiny neurons, the PKA-dependent phosphorylation level remains unaffected in D2 neurons. At the level of PKA-dependent phosphorylation, D2 unresponsiveness depends on protein phosphatase-1 (PP1) inhibition by DARPP-32. Simulations suggest that D2 medium spiny neurons could detect transient dips in dopamine level.
The phasic release of dopamine in the striatum determines various aspects of reward and action selection, but the dynamics of the dopamine effect on intracellular signalling remains poorly understood. We used genetically encoded FRET biosensors in striatal brain slices to quantify the effect of transient dopamine on cAMP or PKA-dependent phosphorylation levels, and computational modelling to further explore the dynamics of this signalling pathway. Medium-sized spiny neurons (MSNs), which express either D or D dopamine receptors, responded to dopamine by an increase or a decrease in cAMP, respectively. Transient dopamine showed similar sub-micromolar efficacies on cAMP in both D1 and D2 MSNs, thus challenging the commonly accepted notion that dopamine efficacy is much higher on D than on D receptors. However, in D2 MSNs, the large decrease in cAMP level triggered by transient dopamine did not translate to a decrease in PKA-dependent phosphorylation level, owing to the efficient inhibition of protein phosphatase 1 by DARPP-32. Simulations further suggested that D2 MSNs can also operate in a 'tone-sensing' mode, allowing them to detect transient dips in basal dopamine. Overall, our results show that D2 MSNs may sense much more complex patterns of dopamine than previously thought.
短暂的多巴胺事件是纹状体中奖励介导学习的关键因素;使用小鼠脑切片中的生物传感器成像和计算机模拟相结合的方法,动态研究了纹状体中的中脑多巴胺能神经元对这种事件的细胞内 cAMP-蛋白激酶 A(PKA)反应。D1 和 D2 中间神经元都可以感知亚微米范围内的短暂多巴胺瞬变。虽然多巴胺瞬变深刻地改变了这两种类型的中间神经元中的 cAMP 水平,但 PKA 依赖性磷酸化水平在 D2 神经元中保持不变。在 PKA 依赖性磷酸化水平上,D2 神经元的无反应性取决于 DARPP-32 对蛋白磷酸酶-1(PP1)的抑制。模拟表明,D2 中间神经元可以检测到多巴胺水平的短暂下降。
纹状体中多巴胺的峰发放决定了奖励和动作选择的各个方面,但多巴胺对细胞内信号转导的影响的动态仍然知之甚少。我们使用纹状体脑切片中的基因编码 FRET 生物传感器来量化瞬时多巴胺对 cAMP 或 PKA 依赖性磷酸化水平的影响,并使用计算模型进一步探索该信号通路的动力学。表达 D 或 D 多巴胺受体的中型多棘神经元(MSN)分别通过 cAMP 的增加或减少对多巴胺作出反应。瞬时多巴胺对 D1 和 D2 MSN 中的 cAMP 均具有类似的亚微米效率,这挑战了多巴胺在 D 受体上的作用效率远高于 D 受体的普遍接受观点。然而,在 D2 MSN 中,短暂多巴胺引起的 cAMP 水平的大幅下降并没有转化为 PKA 依赖性磷酸化水平的下降,这是由于 DARPP-32 对蛋白磷酸酶 1 的有效抑制。模拟进一步表明,D2 MSN 也可以以“音调感知”模式工作,允许它们检测到基础多巴胺的短暂下降。总体而言,我们的结果表明,D2 MSN 可能比以前认为的更能感知多巴胺的更复杂模式。