Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, USA.
Neuropsychopharmacology. 2018 Apr;43(5):1164-1173. doi: 10.1038/npp.2017.254. Epub 2017 Oct 25.
The dopamine D2 receptor (D2R), like many G-protein-coupled receptors, signals through G-protein- and β-arrestin-dependent pathways. Preferential activation of one of these pathways is termed functional selectivity or biased signaling and is a promising therapeutic strategy. Though biased signaling through D2Rs has been demonstrated, acquiring the mechanistic details of biased D2R/G-protein and D2R/β-arrestin signaling in vivo has been challenging because of the lack of techniques that specifically target these interactions in discrete cell populations. To address this question, we employed a cell type-specific viral expression approach to restore D2R variants that preferentially engage either G-protein or β-arrestin signaling in 'indirect pathway' medium spiny neurons (iMSNs), because of their central role in dopamine circuitry. We found that the effect of haloperidol antagonism on D2R metabolic signaling events is largely mediated by acute blockade of D2R/G-protein signaling. We show that a D2R-driven behavior, nestlet shredding, is similarly driven by D2R/G-protein signaling. On the other hand, D2R-driven locomotion and rearing require coordinated D2R/G-protein and D2R/β-arrestin signaling. The acute locomotor response to amphetamine and cocaine similarly depend on both G-protein and β-arrestin D2R signaling. Surprisingly, another psychotropic drug, phencyclidine, displayed a selective D2R/β-arrestin potentiation of locomotion. These findings highlight how D2R mostly relies upon balanced G-protein and β-arrestin signaling in iMSNs. However, the response to haloperidol and phencyclidine indicates that normal D2R signaling homeostasis can be dramatically altered, indicating that targeting a specific D2R signal transduction pathway could allow for more precise modulation of dopamine circuit function.
多巴胺 D2 受体(D2R)与许多 G 蛋白偶联受体一样,通过 G 蛋白和β-arrestin 依赖性途径传递信号。这些途径中的一种途径的优先激活被称为功能选择性或偏向信号传递,是一种很有前途的治疗策略。尽管已经证明了 D2R 的偏向信号传递,但由于缺乏专门针对这些相互作用在离散细胞群中的技术,因此在体内获得偏向 D2R/G 蛋白和 D2R/β-arrestin 信号传递的机制细节一直具有挑战性。为了解决这个问题,我们采用了一种细胞类型特异性病毒表达方法,在“间接途径”中的中脑投射神经元(iMSNs)中恢复优先参与 G 蛋白或β-arrestin 信号传递的 D2R 变体,因为它们在多巴胺电路中起核心作用。我们发现,氟哌啶醇拮抗作用对 D2R 代谢信号事件的影响主要是通过急性阻断 D2R/G 蛋白信号传递来介导的。我们表明,D2R 驱动的行为,nestlet 碎片,同样是由 D2R/G 蛋白信号传递驱动的。另一方面,D2R 驱动的运动和后肢站立需要协调的 D2R/G 蛋白和 D2R/β-arrestin 信号传递。安非他命和可卡因的急性运动反应同样依赖于 G 蛋白和β-arrestin D2R 信号传递。令人惊讶的是,另一种精神药物苯环利定表现出对运动的选择性 D2R/β-arrestin 增强作用。这些发现强调了 D2R 在 iMSNs 中主要依赖于平衡的 G 蛋白和β-arrestin 信号传递。然而,对氟哌啶醇和苯环利定的反应表明,正常的 D2R 信号稳态可以被显著改变,这表明靶向特定的 D2R 信号转导途径可以允许更精确地调节多巴胺电路功能。