Rosner Burton S, Kochanski Greg
Phonetics Laboratory, University of Oxford, Oxford, England.
Psychol Rev. 2009 Jan;116(1):116-28. doi: 10.1037/a0014463.
Signal detection theory (SDT) makes the frequently challenged assumption that decision criteria have no variance. An extended model, the Law of Categorical Judgment, relaxes this assumption. The long accepted equation for the law, however, is flawed: It can generate negative probabilities. The correct equation, the Law of Categorical Judgment (Corrected), is derived; the SDT rating model is a special case. An example shows how to invert the Law of Categorical Judgment (Corrected) numerically, thereby extracting estimates of signal and criterion density parameters and their confidence limits from rating data. The SDT rating model predicts linear Zeta-transformed operating characteristics (ZetaROCs), whereas the new equation can produce nonlinear ZetaROCs. For single-criterion experiments (e.g., yes/no, two-alternative forced choice), however, the corrected law yields identical d' values and linear ZetaROCs whether criterion variance is nonzero or zero. Performance differences observed in such experiments can always be attributed equally well to altered perceptual sensitivity or to modified criterion variance. The Law of Categorical Judgment (Corrected) offers to resolve this ambiguity through rating experiments.
信号检测理论(SDT)做出了一个常受质疑的假设,即决策标准没有方差。一个扩展模型,即分类判断定律,放宽了这一假设。然而,长期以来被接受的该定律方程存在缺陷:它会产生负概率。推导得出了正确的方程,即修正后的分类判断定律;SDT评级模型是一个特例。一个例子展示了如何通过数值方法对修正后的分类判断定律进行反演,从而从评级数据中提取信号和标准密度参数的估计值及其置信区间。SDT评级模型预测线性Zeta变换后的操作特征(ZetaROC),而新方程可以产生非线性ZetaROC。然而,对于单标准实验(例如,是/否、二选一强制选择),无论标准方差是非零还是零,修正后的定律都会产生相同的d'值和线性ZetaROC。在这类实验中观察到的性能差异总是可以同样好地归因于感知灵敏度的改变或标准方差的修改。修正后的分类判断定律通过评级实验来解决这种模糊性。