Suppr超能文献

空肠弯曲菌PglH是一种具有单个活性位点的持续性聚合酶,它利用产物抑制来限制连续的糖基转移反应。

Campylobacter jejuni PglH is a single active site processive polymerase that utilizes product inhibition to limit sequential glycosyl transfer reactions.

作者信息

Troutman Jerry M, Imperiali Barbara

机构信息

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

出版信息

Biochemistry. 2009 Mar 31;48(12):2807-16. doi: 10.1021/bi802284d.

Abstract

Asparagine-linked protein glycosylation is essential for the virulence of the human gut mucosal pathogen Campylobacter jejuni . The heptasaccharide that is transferred to proteins is biosynthesized via the glycosyltransferase-catalyzed addition of sugar units to an undecaprenyl diphosphate-linked carrier. Genetic studies on the heptasaccharide assembly enzymes have shown that PglH, which transfers three terminal N-acetyl-galactosamine (GalNAc) residues to the carrier polyisoprene, is essential for chick colonization by C. jejuni . While it is now clear that PglH catalyzes multiple transfer reactions, the mechanism whereby the reactions cease after the addition of just three GalNAc residues has yet to be understood. To address this issue, a series of mechanistic biochemical studies was conducted with purified native PglH. This enzyme was found to follow a processive mechanism under initial rate conditions; however, product inhibition and product accumulation led to PglH release of intermediate products prior to complete conversion to the native ultimate product. Point mutations of an essential EX(7)E sequence motif were used to demonstrate that a single active site was responsible for all three transferase reactions, and a homology model with the mannosyltransferase PimA, from Mycobacteria smegmatis , establishes the requirement of the EX(7)E motif in catalysis. Finally, increased binding affinity with increasing glycan size is proposed to provide PglH with a counting mechanism that does not allow the transfer of more than three GalNAc residues. These results provide important mechanistic insights into the function of the glycosyl transfer polymerase that is related to the virulence of C. jejuni .

摘要

天冬酰胺连接的蛋白质糖基化对于人类肠道黏膜病原体空肠弯曲菌的毒力至关重要。转移至蛋白质上的七糖是通过糖基转移酶催化将糖单元添加到十一异戊二烯二磷酸连接的载体上生物合成的。对七糖组装酶的遗传学研究表明,将三个末端N - 乙酰半乳糖胺(GalNAc)残基转移至载体聚异戊二烯上的PglH,对于空肠弯曲菌在鸡体内定殖至关重要。虽然现在已经清楚PglH催化多个转移反应,但仅添加三个GalNAc残基后反应就停止的机制尚不清楚。为了解决这个问题,我们用纯化的天然PglH进行了一系列机理生化研究。发现该酶在初始速率条件下遵循连续反应机制;然而,产物抑制和产物积累导致PglH在完全转化为天然最终产物之前释放中间产物。利用一个必需的EX(7)E序列基序的点突变来证明单个活性位点负责所有三个转移酶反应,并且与耻垢分枝杆菌的甘露糖基转移酶PimA的同源模型确定了EX(7)E基序在催化中的必要性。最后,有人提出随着聚糖大小增加结合亲和力也增加,为PglH提供一种计数机制,使其不会转移超过三个GalNAc残基。这些结果为与空肠弯曲菌毒力相关的糖基转移聚合酶的功能提供了重要的机理见解。

相似文献

2
Structural basis of the molecular ruler mechanism of a bacterial glycosyltransferase.
Nat Commun. 2018 Jan 31;9(1):445. doi: 10.1038/s41467-018-02880-2.
4
In vitro assembly of the undecaprenylpyrophosphate-linked heptasaccharide for prokaryotic N-linked glycosylation.
Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14255-9. doi: 10.1073/pnas.0507311102. Epub 2005 Sep 26.
5
Dual Glycosyltransferases from Diverge from the Canonical N-Linked Glycan Assembly Pathway.
Biochemistry. 2024 Sep 17;63(18):2369-2379. doi: 10.1021/acs.biochem.4c00351. Epub 2024 Aug 28.
9

引用本文的文献

1
O-antigen polysaccharides in : structures and molecular basis for antigenic diversity.
Microbiol Mol Biol Rev. 2025 Jun 25;89(2):e0009023. doi: 10.1128/mmbr.00090-23. Epub 2025 Mar 21.
2
Structural insights into polyisoprenyl-binding glycosyltransferases.
Structure. 2025 Apr 3;33(4):639-651. doi: 10.1016/j.str.2025.01.003. Epub 2025 Jan 29.
5
The Missing Pieces: The Role of Secretion Systems in Virulence.
Biomolecules. 2023 Jan 9;13(1):135. doi: 10.3390/biom13010135.
7
Making the Enterobacterial Common Antigen Glycan and Measuring Its Substrate Sequestration.
ACS Chem Biol. 2021 Apr 16;16(4):691-700. doi: 10.1021/acschembio.0c00983. Epub 2021 Mar 19.
8
Influence of Protein Glycosylation on Physiology.
Front Microbiol. 2020 Jun 17;11:1191. doi: 10.3389/fmicb.2020.01191. eCollection 2020.
9
Processivity in Bacterial Glycosyltransferases.
ACS Chem Biol. 2020 Jan 17;15(1):3-16. doi: 10.1021/acschembio.9b00619. Epub 2019 Dec 11.

本文引用的文献

1
Chemoenzymatic synthesis of polyprenyl phosphates.
Bioorg Med Chem. 2008 May 1;16(9):5149-56. doi: 10.1016/j.bmc.2008.03.025. Epub 2008 Mar 14.
2
Polyisoprenol specificity in the Campylobacter jejuni N-linked glycosylation pathway.
Biochemistry. 2007 Dec 18;46(50):14342-8. doi: 10.1021/bi701956x. Epub 2007 Nov 23.
3
Molecular recognition and interfacial catalysis by the essential phosphatidylinositol mannosyltransferase PimA from mycobacteria.
J Biol Chem. 2007 Jul 13;282(28):20705-14. doi: 10.1074/jbc.M702087200. Epub 2007 May 16.
4
From peptide to protein: comparative analysis of the substrate specificity of N-linked glycosylation in C. jejuni.
Biochemistry. 2007 May 8;46(18):5579-85. doi: 10.1021/bi602633n. Epub 2007 Apr 17.
8
Biosynthesis of the N-linked glycan in Campylobacter jejuni and addition onto protein through block transfer.
J Bacteriol. 2006 Apr;188(7):2427-34. doi: 10.1128/JB.188.7.2427-2434.2006.
9
Structural and functional analyses of the human Toll-like receptor 3. Role of glycosylation.
J Biol Chem. 2006 Apr 21;281(16):11144-51. doi: 10.1074/jbc.M510442200. Epub 2006 Feb 16.
10
Asparagine-linked protein glycosylation: from eukaryotic to prokaryotic systems.
Glycobiology. 2006 Jun;16(6):91R-101R. doi: 10.1093/glycob/cwj099. Epub 2006 Mar 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验