Department of Chemistry, Boston University, Boston, Massachusetts, USA.
Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Protein Sci. 2024 Jan;33(1):e4848. doi: 10.1002/pro.4848.
In selected Campylobacter species, the biosynthesis of N-linked glycoconjugates via the pgl pathway is essential for pathogenicity and survival. However, most of the membrane-associated GT-B fold glycosyltransferases responsible for diversifying glycans in this pathway have not been structurally characterized which hinders the understanding of the structural factors that govern substrate specificity and prediction of resulting glycan composition. Herein, we report the 1.8 Å resolution structure of Campylobacter concisus PglA, the glycosyltransferase responsible for the transfer of N-acetylgalatosamine (GalNAc) from uridine 5'-diphospho-N-acetylgalactosamine (UDP-GalNAc) to undecaprenyl-diphospho-N,N'-diacetylbacillosamine (UndPP-diNAcBac) in complex with the sugar donor GalNAc. This study identifies distinguishing characteristics that set PglA apart within the GT4 enzyme family. Computational docking of the structure in the membrane in comparison to homologs points to differences in interactions with the membrane-embedded acceptor and the structural analysis of the complex together with bioinformatics and site-directed mutagenesis identifies donor sugar binding motifs. Notably, E113, conserved solely among PglA enzymes, forms a hydrogen bond with the GalNAc C6″-OH. Mutagenesis of E113 reveals activity consistent with this role in substrate binding, rather than stabilization of the oxocarbenium ion transition state, a function sometimes ascribed to the corresponding residue in GT4 homologs. The bioinformatic analyses reveal a substrate-specificity motif, showing that Pro281 in a substrate binding loop of PglA directs configurational preference for GalNAc over GlcNAc. This proline is replaced by a conformationally flexible glycine, even in distant homologs, which favor substrates with the same stereochemistry at C4, such as glucose. The signature loop is conserved across all Campylobacter PglA enzymes, emphasizing its importance in substrate specificity.
在某些弯曲杆菌属物种中,通过 pgl 途径合成 N-连接糖缀合物对于致病性和生存至关重要。然而,大多数负责多样化该途径中糖链的膜相关 GT-B 折叠糖基转移酶尚未进行结构表征,这阻碍了对控制底物特异性和预测糖基组成的结构因素的理解。在此,我们报告了 Campylobacter concisus PglA 的 1.8Å分辨率结构,PglA 是负责将 N-乙酰半乳糖胺(GalNAc)从尿苷 5'-二磷酸-N-乙酰半乳糖胺(UDP-GalNAc)转移到十一碳烯基二磷酸-N,N'-二乙酰胞壁酰二氨基己糖(UndPP-diNAcBac)的糖基转移酶,复合物中还结合了供体糖 GalNAc。这项研究确定了使 PglA 在 GT4 酶家族中与众不同的独特特征。与同源物相比,在膜中对结构进行计算对接表明,与膜嵌入式受体的相互作用存在差异,并且结构分析与生物信息学和定点突变分析一起确定了供体糖结合基序。值得注意的是,仅在 PglA 酶中保守的 E113 与 GalNAc 的 C6″-OH 形成氢键。E113 的突变揭示了与底物结合相关的活性,而不是稳定 oxocarbenium 离子过渡态的作用,该作用有时归因于 GT4 同源物中的相应残基。生物信息学分析揭示了一个底物特异性基序,表明 PglA 中底物结合环中的 Pro281 引导 GalNAc 相对于 GlcNAc 的构象偏好。该脯氨酸被构象灵活的甘氨酸取代,即使在遥远的同源物中也是如此,这有利于具有相同 C4 立体化学的底物,例如葡萄糖。特征性环在所有弯曲杆菌属 PglA 酶中都保守,强调了其在底物特异性中的重要性。