Suppr超能文献

基于模板的心电图信号压缩

Template-based compression of ECG signals.

作者信息

Ayari Emna Zoghlami, Tielert Rheinhardt, Wehn Norbert

机构信息

Microelectronic Systems Design Research Group, Department of Electrical Engineering, University of Kaiserslautern, Germany.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:283-6. doi: 10.1109/IEMBS.2008.4649145.

Abstract

A new approach for ECG data compression is proposed in this paper. Using a nonlinear least squares optimization procedure, the approach employs an algorithm based on template model fitting. Only 12 parameters are required to fully represent the ECG signal without diagnostic information loss. The effectiveness of our ECG compression technique is described in terms of high compression ratios, relatively low distortion values of less than 9%, and a low computational cost, thus demonstrating the beneficial use of our technique for ECG data storage and online transmission. Comparisons with other recent compression methods in the literature have shown that our method performs better.

摘要

本文提出了一种用于心电图(ECG)数据压缩的新方法。该方法采用基于模板模型拟合的算法,通过非线性最小二乘优化程序,仅需12个参数就能在不损失诊断信息的情况下完整表示心电图信号。我们的心电图压缩技术具有高压缩率、小于9%的相对较低失真值以及低计算成本等优点,证明了该技术在心电图数据存储和在线传输方面的有益应用。与文献中其他近期压缩方法的比较表明,我们的方法性能更优。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验